Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Metabolites ; 13(2)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36837871

ABSTRACT

This work focused on the metabolomic profiling of the conditioned medium (FS03CM) produced by an anaerobic bacterium closely related to Terrisporobacter spp. to identify potential antimicrobial metabolites. The metabolome of the conditioned medium was profiled by two-channel Chemical Isotope Labelling (CIL) LC-MS. The detected metabolites were identified or matched by conducting a library search using different confidence levels. Forty-eight significantly changed metabolites were identified with high confidence after the growth of isolate FS03 in cooked meat glucose starch (CMGS) medium. Some of the secondary metabolites identified with known antimicrobial activities were 4-hydroxyphenyllactate, 3-hydroxyphenylacetic acid, acetic acid, isobutyric acid, valeric acid, and tryptamine. Our findings revealed the presence of different secondary metabolites with previously reported antimicrobial activities and suggested the capability of producing antimicrobial metabolites by the anaerobic bacterium FS03.

2.
PLoS One ; 17(4): e0266406, 2022.
Article in English | MEDLINE | ID: mdl-35363830

ABSTRACT

The exploitation of natural antimicrobial compounds that can be used in food preservation has been fast tracked by the development of antimicrobial resistance to existing antimicrobials and the increasing consumer demand for natural food preservatives. 2-hydroxyisocaproic acid (HICA) is a natural compound produced through the leucine degradation pathway and is produced in humans and by certain microorganisms such as lactic acid bacteria and Clostridium species. The present study investigated the antibacterial efficacy of HICA against some important bacteria associated with food quality and safety and provided some insights into its possible antimicrobial mechanisms against bacteria. The results revealed that HICA was effective in inhibiting the growth of tested Gram-positive and Gram-negative bacteria including a multi-drug resistant P. aeruginosa strain in this study. The underlying mechanism was investigated by measuring the cell membrane integrity, membrane permeability, membrane depolarisation, and morphological and ultrastructural changes after HICA treatment in bacterial cells. The evidence supports that HICA exerts its activity via penetration of the bacterial cell membranes, thereby causing depolarisation, rupture of membranes, subsequent leakage of cellular contents and cell death. The current study suggests that HICA has potential to be used as an antibacterial agent against food spoilage and food-borne pathogenic bacteria, targeting the bacterial cell envelope.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Caproates , Gram-Negative Bacteria , Gram-Positive Bacteria , Humans , Microbial Sensitivity Tests
3.
BMC Genomics ; 22(1): 686, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34548019

ABSTRACT

BACKGROUND: Soil bacteria are a major source of specialized metabolites including antimicrobial compounds. Yet, one of the most diverse genera of bacteria ubiquitously present in soil, Clostridium, has been largely overlooked in bioactive compound discovery. As Clostridium spp. thrive in extreme environments with their metabolic mechanisms adapted to the harsh conditions, they are likely to synthesize molecules with unknown structures, properties, and functions. Therefore, their potential to synthesize small molecules with biological activities should be of great interest in the search for novel antimicrobial compounds. The current study focused on investigating the antimicrobial potential of four soil Clostridium isolates, FS01, FS2.2 FS03, and FS04, using a genome-led approach, validated by culture-based methods. RESULTS: Conditioned/spent media from all four Clostridium isolates showed varying levels of antimicrobial activity against indicator microorganism; all four isolates significantly inhibited the growth of Pseudomonas aeruginosa. FS01, FS2.2, and FS04 were active against Bacillus mycoides and FS03 reduced the growth of Bacillus cereus. Phylogenetic analysis together with DNA-DNA hybridization (dDDH), average nucleotide identity (ANI), and functional genome distribution (FGD) analyses confirmed that FS01, FS2.2, and FS04 belong to the species Paraclostridium bifermentans, Clostridium cadaveris, and Clostridium senegalense respectively, while FS03 may represent a novel species of the genus Clostridium. Bioinformatics analysis using antiSMASH 5.0 predicted the presence of eight biosynthetic gene clusters (BGCs) encoding for the synthesis of ribosomally synthesized post-translationally modified peptides (RiPPs) and non-ribosomal peptides (NRPs) in four genomes. All predicted BGCs showed no similarity with any known BGCs suggesting novelty of the molecules from those predicted gene clusters. In addition, the analysis of genomes for putative virulence factors revealed the presence of four putative Clostridium toxin related genes in FS01 and FS2.2 genomes. No genes associated with the main Clostridium toxins were identified in the FS03 and FS04 genomes. CONCLUSIONS: The presence of BGCs encoding for uncharacterized RiPPs and NRPSs in the genomes of antagonistic Clostridium spp. isolated from farm soil indicated their potential to produce novel secondary metabolites. This study serves as a basis for the identification and characterization of potent antimicrobials from these soil Clostridium spp. and expands the current knowledge base, encouraging future research into bioactive compound production in members of the genus Clostridium.


Subject(s)
Anti-Infective Agents , Soil , Bacillus , Clostridium/genetics , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...