Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3810, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714671

ABSTRACT

Previous studies have revealed heterogeneity in the progression to clinical type 1 diabetes in children who develop islet-specific antibodies either to insulin (IAA) or glutamic acid decarboxylase (GADA) as the first autoantibodies. Here, we test the hypothesis that children who later develop clinical disease have different early immune responses, depending on the type of the first autoantibody to appear (GADA-first or IAA-first). We use mass cytometry for deep immune profiling of peripheral blood mononuclear cell samples longitudinally collected from children who later progressed to clinical disease (IAA-first, GADA-first, ≥2 autoantibodies first groups) and matched for age, sex, and HLA controls who did not, as part of the Type 1 Diabetes Prediction and Prevention study. We identify differences in immune cell composition of children who later develop disease depending on the type of autoantibodies that appear first. Notably, we observe an increase in CD161 expression in natural killer cells of children with ≥2 autoantibodies and validate this in an independent cohort. The results highlight the importance of endotype-specific analyses and are likely to contribute to our understanding of pathogenic mechanisms underlying type 1 diabetes development.


Subject(s)
Autoantibodies , Diabetes Mellitus, Type 1 , Glutamate Decarboxylase , Immunity, Cellular , Humans , Diabetes Mellitus, Type 1/immunology , Autoantibodies/immunology , Autoantibodies/blood , Child , Female , Male , Glutamate Decarboxylase/immunology , Child, Preschool , Adolescent , Killer Cells, Natural/immunology , Leukocytes, Mononuclear/immunology , Insulin/immunology , Islets of Langerhans/immunology , Disease Progression
2.
Autoimmunity ; 56(1): 2259118, 2023 12.
Article in English | MEDLINE | ID: mdl-37724526

ABSTRACT

We elucidated the effect of four known T1D-susceptibility associated single nucleotide polymorphism (SNP) markers in three genes (rs12722495 and rs2104286 in IL2RA, rs689 in INS and rs2476601 in PTPN22) on CpG site methylation of their proximal promoters in different lymphocyte subsets using pyrosequencing. The study cohort comprised 25 children with newly diagnosed T1D and 25 matched healthy controls. The rs689 SNP was associated with methylation at four CpG sites in INS promoter: -234, -206, -102 and -69. At all four CpG sites, the susceptibility genotype AA was associated with a higher methylation level compared to the other genotypes. We also found an association between rs12722495 and methylation at CpG sites -373 and -356 in IL2RA promoter in B cells, where the risk genotype AA was associated with lower methylation level compared to the AG genotype. The other SNPs analyzed did not demonstrate significant associations with CpG site methylation in the examined genes. Additionally, we compared the methylation between children with T1D and controls, and found statistically significant methylation differences at CpG -135 in INS in CD8+ T cells (p = 0.034), where T1D patients had a slightly higher methylation compared to controls (87.3 ± 7.2 vs. 78.8 ± 8.9). At the other CpG sites analyzed, the methylation was similar. Our results not only confirm the association between INS methylation and rs689 discovered in earlier studies but also report this association in sorted immune cells. We also report an association between rs12722495 and IL2RA promoter methylation in B cells. These results suggest that at least part of the genetic effect of rs689 and rs12722495 on T1D pathogenesis may be conveyed by DNA methylation.


Subject(s)
DNA Methylation , Diabetes Mellitus, Type 1 , Humans , Child , Genotype , Lymphocyte Subsets , B-Lymphocytes , Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics , Interleukin-2 Receptor alpha Subunit/genetics
3.
Pediatr Diabetes ; 23(6): 703-713, 2022 09.
Article in English | MEDLINE | ID: mdl-35419920

ABSTRACT

OBJECTIVE: The pathogenesis of type 1 diabetes (T1D) is associated with genetic predisposition and immunological changes during presymptomatic disease. Differences in immune cell subset numbers and phenotypes between T1D patients and healthy controls have been described; however, the role and function of these changes in the pathogenesis is still unclear. Here we aimed to analyze the transcriptomic landscapes of peripheral blood mononuclear cells (PBMCs) during presymptomatic disease. METHODS: Transcriptomic differences in PBMCs were compared between cases positive for islet autoantibodies and autoantibody negative controls (9 case-control pairs) and further in monocytes and lymphocytes separately in autoantibody positive subjects and control subjects (25 case-control pairs). RESULTS: No significant differential expression was found in either data set. However, when gene set enrichment analysis was performed, the gene sets "defence response to virus" (FDR <0.001, ranking 2), "response to virus" (FDR <0.001, ranking 3) and "response to type I interferon" (FDR = 0.002, ranking 12) were enriched in the upregulated genes among PBMCs in cases. Upon further analysis, this was also seen in monocytes in cases (FDR = 0.01, ranking 2; FDR = 0.04, ranking 3 and FDR = 0.02, ranking 1, respectively) but not in lymphocytes. CONCLUSION: Gene set enrichment analysis of children with T1D-associated autoimmunity revealed changes in pathways relevant for virus infection in PBMCs, particularly in monocytes. Virus infections have been repeatedly implicated in the pathogenesis of T1D. These results support the viral hypothesis by suggesting altered immune activation of viral immune pathways in monocytes during diabetes.


Subject(s)
Diabetes Mellitus, Type 1 , Virus Diseases , Asymptomatic Diseases , Autoantibodies , Autoimmunity/genetics , Humans , Leukocytes, Mononuclear , Monocytes/metabolism , Up-Regulation , Virus Diseases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...