Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38732853

ABSTRACT

The multimodal and dispersive character of ultrasonic guided waves (UGW) offers the potential for non-destructive evaluation of fiber-reinforced composite (FRC) materials. In this study, a methodology for in situ stiffness assessment of FRCs using UGWs is introduced. The proposed methodology involves a comparison between measured wave speeds of the fundamental symmetric and antisymmetric guided wave modes with a pre-established dataset of UGW speeds and translation of them to corresponding stiffness properties, i.e., ABD-components, in an inverse manner. The dispersion relations of guided waves have been calculated using the semi-analytical finite element method. First, the performance of the proposed methodology has been assessed numerically. It has been demonstrated that each of the independent ABD-components of the considered laminate can be approximated with an error lower than 10.4% compared to its actual value. The extensional and bending stiffness properties can be approximated within an average error of 3.6% and 9.0%, respectively. Secondly, the performance of the proposed methodology has been assessed experimentally. This experimental assessment has been performed on a glass fiber-reinforced composite plate and the results were compared to mechanical tensile and four-point bending tests on coupons cut from the plate. Larger differences between the estimated ABD-components according to UGW and mechanical testing were observed. These differences were partly attributed to the variation in material properties across the test plate and the averaging of properties over the measurement area.

2.
Sensors (Basel) ; 22(4)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35214419

ABSTRACT

In the condition monitoring of bearings using acoustic emission (AE), the restriction to solely instrument one of the two rings is generally considered a limitation for detecting signals originating from defects on the opposing non-instrumented ring or its interface with the rollers due to the signal energy loss. This paper presents an approach to evaluate transmission in low-speed roller bearings for application in passive ultrasound monitoring. An analytical framework to describe the propagation and transmission of ultrasonic waves through the geometry and interfaces of a bearing is presented. This framework has been used to evaluate the transmission of simulated damage signals in an experiment with a static bearing. The results suggest that low- to mid-frequency signals (<200 kHz), when passing through the rollers and their interfaces from one raceway to the other, can retain enough energy to be potentially detected. An average transmission loss in the range of 10-15 dB per interface was experimentally observed.

3.
Sensors (Basel) ; 23(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36616759

ABSTRACT

Offshore support structures and mooring systems are predominantly subject to corrosion and fatigue. These structures are typically covered with marine growth of various types. Conventional inspection methods for assessment of the structural integrity require access to the cleaned surface of these structures; however, the cleaning process is highly undesirable from the technical, economical, and environmental points of view. This paper highlights research on feasibility assessment of detection and localization of corrosion damage under marine growth using acoustic emission (AE). Experiments were conducted on two carbon steel plates, one baseline sample and one covered with artificially fabricated marine growth. The results of accelerated corrosion experiments suggest that corrosion-induced ultrasound signals can be detected with satisfactory signal-to-noise ratio using non-contact AE sensors. Ultrasound waves passing through marine growth showed around 12 dB drop in amplitude when compared to the base plate. A localization algorithm for corrosion induced-ultrasound signals was successfully implemented.


Subject(s)
Carbon , Steel , Corrosion , Steel/chemistry , Acoustics
4.
Sensors (Basel) ; 21(20)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34696139

ABSTRACT

Piezoelectric sensors can be embedded in carbon fibre-reinforced plastics (CFRP) for continuous measurement of acoustic emissions (AE) without the sensor being exposed or disrupting hydro- or aerodynamics. Insights into the sensitivity of the embedded sensor are essential for accurate identification of AE sources. Embedded sensors are considered to evoke additional modes of degradation into the composite laminate, accompanied by additional AE. Hence, to monitor CFRPs with embedded sensors, identification of this type of AE is of interest. This study (i) assesses experimentally the performance of embedded sensors for AE measurements, and (ii) investigates AE that emanates from embedded sensor-related degradation. CFRP specimens have been manufactured with and without embedded sensors and tested under four-point bending. AE signals have been recorded by the embedded sensor and two reference surface-bonded sensors. Sensitivity of the embedded sensor has been assessed by comparing centroid frequencies of AE measured using two sizes of embedded sensors. For identification of embedded sensor-induced AE, a hierarchical clustering approach has been implemented based on waveform similarity. It has been confirmed that both types of embedded sensors (7 mm and 20 mm diameter) can measure AE during specimen degradation and final failure. The 7 mm sensor showed higher sensitivity in the 350-450 kHz frequency range. The 20 mm sensor and the reference surface-bounded sensors predominately featured high sensitivity in ranges of 200-300 kHz and 150-350 kHz, respectively. The clustering procedure revealed a type of AE that seems unique to the region of the embedded sensor when under combined in-plane tension and out-of-plane shear stress.


Subject(s)
Acoustics , Carbon Fiber , Cluster Analysis , Monitoring, Physiologic , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...