Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
1.
Cells ; 13(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38727275

ABSTRACT

ATP-binding cassette (ABC) transporters play a crucial role for the efflux of a wide range of substrates across different cellular membranes. In the central nervous system (CNS), ABC transporters have recently gathered significant attention due to their pivotal involvement in brain physiology and neurodegenerative disorders, such as Alzheimer's disease (AD). Glial cells are fundamental for normal CNS function and engage with several ABC transporters in different ways. Here, we specifically highlight ABC transporters involved in the maintenance of brain homeostasis and their implications in its metabolic regulation. We also show new aspects related to ABC transporter function found in less recognized diseases, such as Huntington's disease (HD) and experimental autoimmune encephalomyelitis (EAE), as a model for multiple sclerosis (MS). Understanding both their impact on the physiological regulation of the CNS and their roles in brain diseases holds promise for uncovering new therapeutic options. Further investigations and preclinical studies are warranted to elucidate the complex interplay between glial ABC transporters and physiological brain functions, potentially leading to effective therapeutic interventions also for rare CNS disorders.


Subject(s)
ATP-Binding Cassette Transporters , Central Nervous System , Neuroglia , Humans , ATP-Binding Cassette Transporters/metabolism , Neuroglia/metabolism , Animals , Central Nervous System/metabolism , Central Nervous System/pathology , Central Nervous System Diseases/metabolism , Central Nervous System Diseases/pathology
2.
EJNMMI Radiopharm Chem ; 9(1): 34, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683266

ABSTRACT

BACKGROUND: 6-Bromo-7-[11C]methylpurine ([11C]BMP) is a radiotracer for positron emission tomography (PET) to measure multidrug resistance-associated protein 1 (MRP1) transport activity in different tissues. Previously reported radiosyntheses of [11C]BMP afforded a mixture of 7- and 9-[11C]methyl regioisomers. To prepare for clinical use, we here report an improved regioselective radiosynthesis of [11C]BMP, the results of a non-clinical toxicity study as well as human dosimetry estimates based on mouse PET data. RESULTS: [11C]BMP was synthesised by regioselective N7-methylation of 6-bromo-7H-purine (prepared under good manufacturing practice) with [11C]methyl triflate in presence of 2,2,6,6-tetramethylpiperidine magnesium chloride in a TRACERlab™ FX2 C synthesis module. [11C]BMP was obtained within a total synthesis time of approximately 43 min in a decay-corrected radiochemical yield of 20.5 ± 5.2%, based on starting [11C]methyl iodide, with a radiochemical purity > 99% and a molar activity at end of synthesis of 197 ± 130 GBq/µmol (n = 28). An extended single-dose toxicity study conducted in male and female Wistar rats under good laboratory practice after single intravenous (i.v.) administration of unlabelled BMP (2 mg/kg body weight) revealed no test item related adverse effects. Human dosimetry estimates, based on dynamic whole-body PET data in female C57BL/6J mice, suggested that an i.v. injected activity amount of 400 MBq of [11C]BMP will deliver an effective dose in the typical range of 11C-labelled radiotracers. CONCLUSIONS: [11C]BMP can be produced in sufficient amounts and acceptable quality for clinical use. Data from the non-clinical safety evaluation showed no adverse effects and suggested that the administration of [11C]BMP will be safe and well tolerated in humans.

3.
Mol Pharm ; 21(2): 932-943, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38225758

ABSTRACT

P-glycoprotein (P-gp, encoded in humans by the ABCB1 gene and in rodents by the Abcb1a/b genes) is a membrane transporter that can restrict the intestinal absorption and tissue distribution of many drugs and may also contribute to renal and hepatobiliary drug excretion. The aim of this study was to compare the performance and sensitivity of currently available radiolabeled P-gp substrates for positron emission tomography (PET) with the single-photon emission computed tomography (SPECT) radiotracer [99mTc]Tc-sestamibi for measuring the P-gp function in the kidneys and liver. Wild-type, heterozygous (Abcb1a/b(+/-)), and homozygous (Abcb1a/b(-/-)) Abcb1a/b knockout mice were used as models of different P-gp abundance in excretory organs. Animals underwent either dynamic PET scans after intravenous injection of [11C]N-desmethyl-loperamide, (R)-[11C]verapamil, or [11C]metoclopramide or consecutive static SPECT scans after intravenous injection of [99mTc]Tc-sestamibi. P-gp in the kidneys and liver of the mouse models was analyzed with immunofluorescence labeling and Western blotting. In the kidneys, Abcb1a/b() mice had intermediate P-gp abundance compared with wild-type and Abcb1a/b(-/-) mice. Among the four tested radiotracers, renal clearance of radioactivity (CLurine,kidney) was significantly reduced (-83%) in Abcb1a/b(-/-) mice only for [99mTc]Tc-sestamibi. Biliary clearance of radioactivity (CLbile,liver) was significantly reduced in Abcb1a/b(-/-) mice for [11C]N-desmethyl-loperamide (-47%), [11C]metoclopramide (-25%), and [99mTc]Tc-sestamibi (-79%). However, in Abcb1a/b(+/-) mice, CLbile,liver was significantly reduced (-47%) only for [99mTc]Tc-sestamibi. Among the tested radiotracers, [99mTc]Tc-sestamibi performed best in measuring the P-gp function in the kidneys and liver. Owing to its widespread clinical availability, [99mTc]Tc-sestamibi represents a promising probe substrate to assess systemic P-gp-mediated drug-drug interactions and to measure renal and hepatic P-gp function under different (patho-)physiological conditions.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Metoclopramide , Humans , Mice , Animals , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Tomography, X-Ray Computed , ATP Binding Cassette Transporter, Subfamily B/genetics , Positron-Emission Tomography/methods , Radiopharmaceuticals , Liver/diagnostic imaging , Tomography, Emission-Computed, Single-Photon , Kidney/diagnostic imaging , Nitriles , Organotechnetium Compounds , Mice, Knockout
4.
Int J Mol Sci ; 25(2)2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38279301

ABSTRACT

Hypericum perforatum (St. John's wort) has been described to be beneficial for the treatment of Alzheimer's disease (AD). Different extractions have demonstrated efficiency in mice and humans, esp. extracts with a low hypericin and hyperforin content to reduce side effects such as phototoxicity. In order to systematically elucidate the therapeutic effects of H. perforatum extracts with different polarities, APP-transgenic mice were treated with a total ethanol extract (TE), a polar extract obtained from TE, and an apolar supercritical CO2 (scCO2) extract. The scCO2 extract was formulated with silicon dioxide (SiO2) for better oral application. APP-transgenic mice were treated with several extracts (total, polar, apolar) at different concentrations. We established an early treatment paradigm from the age of 40 days until the age of 80 days, starting before the onset of cerebral ß-amyloid (Aß) deposition at 45 days of age. Their effects on intracerebral soluble and insoluble Aß were analyzed using biochemical analyses. Our study confirms that the scCO2H. perforatum formulation shows better biological activity against Aß-related pathological effects than the TE or polar extracts. Clinically, the treatment resulted in a dose-dependent improvement in food intake with augmentation of the body weight, and, biochemically, it resulted in a significant reduction in both soluble and insoluble Aß (-27% and -25%, respectively). We therefore recommend apolar H. perforatum extracts for the early oral treatment of patients with mild cognitive impairment or early AD.


Subject(s)
Alzheimer Disease , Hypericum , Humans , Mice , Animals , Infant , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Phytotherapy , Hypericum/chemistry , Alzheimer Disease/drug therapy , Alzheimer Disease/chemically induced , Silicon Dioxide/therapeutic use , Amyloid beta-Peptides/toxicity , Mice, Transgenic
5.
Eur J Med Chem ; 266: 116130, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38218127

ABSTRACT

Tacrine (THA), a long withdrawn drug, is still a popular scaffold used in medicinal chemistry, mainly for its good reactivity and multi-targeted effect. However, THA-associated hepatotoxicity is still an issue and must be considered in drug discovery based on the THA scaffold. Following our previously identified hit compound 7-phenoxytacrine (7-PhO-THA), we systematically explored the chemical space with 30 novel derivatives, with a focus on low hepatotoxicity, anticholinesterase action, and antagonism at the GluN1/GluN2B subtype of the NMDA receptor. Applying the down-selection process based on in vitro and in vivo pharmacokinetic data, two candidates, I-52 and II-52, selective GluN1/GluN2B inhibitors thanks to the interaction with the ifenprodil-binding site, have entered in vivo pharmacodynamic studies. Finally, compound I-52, showing only minor affinity to AChE, was identified as a lead candidate with favorable behavioral and neuroprotective effects using open-field and prepulse inhibition tests, along with scopolamine-based behavioral and NMDA-induced hippocampal lesion models. Our data show that compound I-52 exhibits low toxicity often associated with NMDA receptor ligands, and low hepatotoxicity, often related to THA-based compounds.


Subject(s)
Alzheimer Disease , Chemical and Drug Induced Liver Injury , Neuroprotective Agents , Piperidines , Humans , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Receptors, N-Methyl-D-Aspartate , Tacrine/chemistry , Cholinesterase Inhibitors/chemistry , Binding Sites , Cholinesterases , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy
6.
Atheroscler Plus ; 55: 31-38, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38293288

ABSTRACT

Background and aims: Statin-associated muscle symptoms (SAMS) is a prevalent cause of statin discontinuation. It is challenging and time-consuming for clinicians to assess whether symptoms are caused by the statin or not, and diagnostic biomarkers are requested. Atorvastatin metabolites have been associated with SAMS. We aimed to compare atorvastatin pharmacokinetics between coronary heart disease (CHD) patients with and without clinically statin intolerance and statin-dependent histopathological alterations in muscle tissue. Secondarily we aimed to assess genetic variants relevant for the observed pharmacokinetic variables. Methods: Twenty-eight patients with CHD and subjective SAMS were included in the exploratory MUSE biomarker study in 2020. Participants received atorvastatin 40 mg/day for seven weeks followed by no statins for eight weeks. Muscle biopsies and blood were collected at the end of each period. Four patients were categorized as clinically intolerant to ≥3 statins prior to study start whereas four patients had signs of muscle cell damage during treatment. Results: We found significantly lower levels of atorvastatin acids, and higher lactone/acid ratios in the statin intolerant, both in muscle and plasma. With optimal cut-off, the combination of 2-OH-atorvastatin acid and the 2-OH-atorvastatin lactone/acid ratio provided sensitivity, specificity, and predictive values of 100 %. Patients with variants in UGT1A1 and UGT1A3 had higher lactone metabolite levels than those with wild type, both in muscle and plasma. Conclusion: Atorvastatin metabolites appear promising as biomarkers for the identification of clinical statin intolerance in patients with self-perceived SAMS, but the findings have to be confirmed in larger studies.

7.
J Cereb Blood Flow Metab ; 44(1): 142-152, 2024 01.
Article in English | MEDLINE | ID: mdl-37728771

ABSTRACT

The efflux transporter P-glycoprotein (P-gp) at the blood-brain barrier limits the cerebral uptake of various xenobiotics. To assess the sensitivity of [11C]metoclopramide to measure decreased cerebral P-gp function, we performed [11C]metoclopramide PET scans without (baseline) and with partial P-gp inhibition by tariquidar in wild-type, heterozygous Abcb1a/b(+/-) and homozygous Abcb1a/b(-/-) mice as models with controlled levels of cerebral P-gp expression. Brains were collected to quantify P-gp expression with immunohistochemistry. Brain uptake of [11C]metoclopramide was expressed as the area under the brain time-activity curve (AUCbrain) and compared with data previously obtained with (R)-[11C]verapamil and [11C]N-desmethyl-loperamide. Abcb1a/b(+/-) mice had intermediate P-gp expression compared to wild-type and Abcb1a/b(-/-) mice. In baseline scans, all three radiotracers were able to discriminate Abcb1a/b(-/-) from wild-type mice (2.5- to 4.6-fold increased AUCbrain, p ≤ 0.0001). However, only [11C]metoclopramide could discriminate Abcb1a/b(+/-) from wild-type mice (1.46-fold increased AUCbrain, p ≤ 0.001). After partial P-gp inhibition, differences in [11C]metoclopramide AUCbrain between Abcb1a/b(+/-) and wild-type mice (1.39-fold, p ≤ 0.001) remained comparable to baseline. There was a negative correlation between baseline [11C]metoclopramide AUCbrain and ex-vivo-measured P-gp immunofluorescence (r = -0.9875, p ≤ 0.0001). Our data suggest that [11C]metoclopramide is a sensitive radiotracer to measure moderate, but (patho-)physiologically relevant decreases in cerebral P-gp function without the need to co-administer a P-gp inhibitor.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Blood-Brain Barrier , Mice , Animals , Blood-Brain Barrier/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Metoclopramide/metabolism , Brain/diagnostic imaging , Brain/metabolism , ATP Binding Cassette Transporter, Subfamily B/metabolism , Positron-Emission Tomography
8.
J Cheminform ; 15(1): 109, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37978560

ABSTRACT

The discovery of both distinctive lead molecules and novel drug targets is a great challenge in drug discovery, which particularly accounts for orphan diseases. Huntington's disease (HD) is an orphan, neurodegenerative disease of which the pathology is well-described. However, its pathophysiological background and molecular mechanisms are poorly understood. To date, only 2 drugs have been approved on the US and European markets, both of which address symptomatic aspects of this disease only. Although several hundreds of agents were described with efficacy against the HD phenotype in in vitro and/or in vivo models, a successful translation into clinical use is rarely achieved. Two major impediments are, first, the lack of awareness and understanding of the interactome-the sum of key proteins, cascades, and mediators-that contributes to HD initiation and progression; and second, the translation of the little gained knowledge into useful model systems. To counteract this lack of data awareness, we manually compiled and curated the entire modulator landscape of successfully evaluated pre-clinical small-molecule HD-targeting agents which are annotated with substructural molecular patterns, physicochemical properties, as well as drug targets, and which were linked to benchmark databases such as PubChem, ChEMBL, or UniProt. Particularly, the annotation with substructural molecular patterns expressed as binary code allowed for the generation of target-specific and -unspecific fingerprints which could be used to determine the (poly)pharmacological profile of molecular-structurally distinct molecules.

9.
Biology (Basel) ; 12(7)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37508364

ABSTRACT

Alzheimer's disease (AD), the leading cause of dementia, is a growing health issue with very limited treatment options. To meet the need for novel therapeutics, existing drugs with additional preferred pharmacological profiles could be recruited. This strategy is known as 'drug repurposing'. Here, we describe dimethyl fumarate (DMF), a drug approved to treat multiple sclerosis (MS), to be tested as a candidate for other brain diseases. We used an APP-transgenic model (APPtg) of senile ß-amyloidosis mice to further investigate the potential of DMF as a novel AD therapeutic. We treated male and female APPtg mice through drinking water at late stages of ß-amyloid (Aß) deposition. We found that DMF treatment did not result in modulating effects on Aß deposition at this stage. Interestingly, we found that glutathione-modified DMF interacts with the ATP-binding cassette transporter ABCC1, an important gatekeeper at the blood-brain and blood-plexus barriers and a key player for Aß export from the brain. Our findings suggest that ABCC1 prevents the effects of DMF, which makes DMF unsuitable as a novel therapeutic drug against AD. The discovered effects of ABCC1 also have implications for DMF treatment of multiple sclerosis.

10.
J Neuroinflammation ; 20(1): 174, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37496076

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is the leading cause of dementia in the world. The pathology of AD is affiliated with the elevation of both tau (τ) and ß-amyloid (Aß) pathologies. Yet, the direct link between natural τ expression on glia cell activity and Aß remains unclear. While experiments in mouse models suggest that an increase in Aß exacerbates τ pathology when expressed under a neuronal promoter, brain pathology from AD patients suggests an appearance of τ pathology in regions without Aß. METHODS: Here, we aimed to assess the link between τ and Aß using a new mouse model that was generated by crossing a mouse model that expresses two human mutations of the human MAPT under a mouse Tau natural promoter with 5xFAD mice that express human mutated APP and PS1 in neurons. RESULTS: The new mouse model, called 5xFAD TAU, shows accelerated cognitive impairment at 2 months of age, increased number of Aß depositions at 4 months and neuritic plaques at 6 months of age. An expression of human mutated TAU in astrocytes leads to a dystrophic appearance and reduces their ability to engulf Aß, which leads to an increased brain Aß load. Astrocytes expressing mutated human TAU showed an impairment in the expression of vascular endothelial growth factor (VEGF) that has previously been suggested to play an important role in supporting neurons. CONCLUSIONS: Our results suggest the role of τ in exacerbating Aß pathology in addition to pointing out the potential role of astrocytes in disease progression. Further research of the crosstalk between τ and Aß in astrocytes may increase our understanding of the role glia cells have in the pathology of AD with the aim of identifying novel therapeutic interventions to an otherwise currently incurable disease.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Animals , Humans , Infant , Mice , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Astrocytes/metabolism , Brain/metabolism , Disease Models, Animal , Mice, Transgenic , tau Proteins/genetics , tau Proteins/metabolism , Vascular Endothelial Growth Factor A/metabolism
11.
Int J Mol Sci ; 24(6)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36983062

ABSTRACT

Neuroinflammation and brain lipid imbalances are observed in Alzheimer's disease (AD). Tumor necrosis factor-α (TNFα) and the liver X receptor (LXR) signaling pathways are involved in both processes. However, limited information is currently available regarding their relationships in human brain pericytes (HBP) of the neurovascular unit. In cultivated HBP, TNFα activates the LXR pathway and increases the expression of one of its target genes, the transporter ATP-binding cassette family A member 1 (ABCA1), while ABCG1 is not expressed. Apolipoprotein E (APOE) synthesis and release are diminished. The cholesterol efflux is promoted, but is not inhibited, when ABCA1 or LXR are blocked. Moreover, as for TNFα, direct LXR activation by the agonist (T0901317) increases ABCA1 expression and the associated cholesterol efflux. However, this process is abolished when LXR/ABCA1 are both inhibited. Neither the other ABC transporters nor the SR-BI are involved in this TNFα-mediated lipid efflux regulation. We also report that inflammation increases ABCB1 expression and function. In conclusion, our data suggest that inflammation increases HBP protection against xenobiotics and triggers an LXR/ABCA1 independent cholesterol release. Understanding the molecular mechanisms regulating this efflux at the level of the neurovascular unit remains fundamental to the characterization of links between neuroinflammation, cholesterol and HBP function in neurodegenerative disorders.


Subject(s)
Pericytes , Tumor Necrosis Factor-alpha , Humans , Liver X Receptors/genetics , Liver X Receptors/metabolism , Tumor Necrosis Factor-alpha/metabolism , Pericytes/metabolism , Orphan Nuclear Receptors/genetics , Neuroinflammatory Diseases , Cholesterol/metabolism , Signal Transduction , Brain/metabolism , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism
12.
Pituitary ; 26(2): 227-236, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36952069

ABSTRACT

PURPOSE: Transforming growth factor-beta receptor 3-like (TGFBR3L) is a pituitary enriched membrane protein selectively detected in gonadotroph cells. TGFBR3L is named after transforming growth factor-beta receptor 3 (TGFBR3), an inhibin A co-receptor in mice, due to sequence identity to the C-terminal region. We aimed to characterize TGFBR3L detection in a well-characterized, prospectively collected cohort of non-functioning pituitary neuroendocrine tumours (NF-PitNETs) and correlate it to clinical data. METHODS: 144 patients operated for clinically NF-PitNETs were included. Clinical, radiological and biochemical data were recorded. Immunohistochemical (IHC) staining for FSHß and LHß was scored using the immunoreactive score (IRS), TGFBR3L and TGFBR3 were scored by the percentage of positive stained cells. RESULTS: TGFBR3L staining was selectively present in 52% of gonadotroph tumours. TGFBR3L was associated to IRS of LHß (median 2 [IQR 0-3] in TGFBR3L negative and median 6 [IQR 3-9] in TGFBR3L positive tumours, p < 0.001), but not to the IRS of FSHß (p = 0.32). The presence of TGFBR3L was negatively associated with plasma gonadotropin concentrations in males (P-FSH median 5.5 IU/L [IQR 2.9-9.6] and median 3.0 [IQR 1.8-5.6] in TGFBR3L negative and positive tumours respectively, p = 0.008) and P-LH (median 2.8 IU/L [IQR 1.9-3.7] and median 1.8 [IQR 1.1-3.0] in TGFBR3L negative and positive tumours respectively, p = 0.03). TGFBR3 stained positive in 22% (n = 25) of gonadotroph tumours with no correlation to TGFBR3L. CONCLUSION: TGFBR3L was selectively detected in half (52%) of gonadotroph NF-PitNETs. The association to LHß staining and plasma gonadotropins suggests that TGFBR3L may be involved in hormone production in gonadotroph NF-PitNETs.


Subject(s)
Gonadotrophs , Neuroendocrine Tumors , Pituitary Neoplasms , Male , Animals , Mice , Gonadotrophs/metabolism , Pituitary Neoplasms/pathology , Gonadotropins , Transforming Growth Factors/metabolism , Follicle Stimulating Hormone
13.
Biomolecules ; 13(2)2023 02 09.
Article in English | MEDLINE | ID: mdl-36830699

ABSTRACT

Alzheimer's disease (AD) is the most common cause of dementia. Fingolimod has previously shown beneficial effects in different animal models of AD. However, it has shown contradictory effects when it has been applied at early disease stages. Our objective was to evaluate fingolimod in two different treatment paradigms. To address this aim, we treated male and female APP-transgenic mice for 50 days, starting either before plaque deposition at 50 days of age (early) or at 125 days of age (late). To evaluate the effects, we investigated the neuroinflammatory and glial markers, the Aß load, and the concentration of the brain-derived neurotrophic factor (BDNF). We found a reduced Aß load only in male animals in the late treatment paradigm. These animals also showed reduced microglia activation and reduced IL-1ß. No other treatment group showed any difference in comparison to the controls. On the other hand, we detected a linear correlation between BDNF and the brain Aß concentrations. The fingolimod treatment has shown beneficial effects in AD models, but the outcome depends on the neuroinflammatory state at the start of the treatment. Thus, according to our data, a fingolimod treatment would be effective after the onset of the first AD symptoms, mainly affecting the neuroinflammatory reaction to the ongoing Aß deposition.


Subject(s)
Alzheimer Disease , Mice , Animals , Male , Female , Fingolimod Hydrochloride/pharmacology , Amyloid beta-Protein Precursor , Amyloid beta-Peptides , Brain-Derived Neurotrophic Factor , Mice, Transgenic , Disease Models, Animal
14.
J Med Chem ; 66(1): 657-676, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36584238

ABSTRACT

The solute carrier (SLC) monocarboxylate transporter 1 (MCT1; SLC16A1) represents a promising target for the treatment of cancer; however, the MCT1 modulator landscape is underexplored with only roughly 100 reported compounds. To expand the knowledge about MCT1 modulation, we synthesized a library of 16 indole-based molecules and subjected these to a comprehensive biological assessment platform. All compounds showed functional inhibitory activities against MCT1 at low nanomolar concentrations and great antiproliferative activities against the MCT1-expressing cancer cell lines A-549 and MCF-7, while the compounds were selective over MCT4 (SLC16A4). Lead compound 24 demonstrated a greater potency than the reference compound, and molecular docking revealed strong binding affinities to MCT1. Compound 24 led to cancer cell cycle arrest as well as apoptosis, and it showed to sensitize these cancer cells toward an antineoplastic agent. Strikingly, compound 24 had also significant inhibitory power against the multidrug transporter ABCB1 and showed to reverse ABCB1-mediated multidrug resistance (MDR).


Subject(s)
Antineoplastic Agents , Symporters , Molecular Docking Simulation , Symporters/metabolism , Antineoplastic Agents/pharmacology , Membrane Transport Proteins , Indoles/pharmacology , Monocarboxylic Acid Transporters
15.
Int J Mol Sci ; 23(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36499090

ABSTRACT

Huntington's disease (HD) is a lethal neurodegenerative disorder without efficient therapeutic options. The inefficient translation from preclinical and clinical research into clinical use is mainly attributed to the lack of (i) understanding of disease initiation, progression, and involved molecular mechanisms; (ii) knowledge of the possible HD target space and general data awareness; (iii) detailed characterizations of available disease models; (iv) better suitable models; and (v) reliable and sensitive biomarkers. To generate robust HD-like symptoms in a mouse model, the neomycin resistance cassette was excised from zQ175 mice, generating a new line: zQ175Δneo. We entirely describe the dynamics of behavioral, neuropathological, and immunohistological changes from 15-57 weeks of age. Specifically, zQ175Δneo mice showed early astrogliosis from 15 weeks; growth retardation, body weight loss, and anxiety-like behaviors from 29 weeks; motor deficits and reduced muscular strength from 36 weeks; and finally slight microgliosis at 57 weeks of age. Additionally, we collected the entire bioactivity network of small-molecule HD modulators in a multitarget dataset (HD_MDS). Hereby, we uncovered 358 unique compounds addressing over 80 different pharmacological targets and pathways. Our data will support future drug discovery approaches and may serve as useful assessment platform for drug discovery and development against HD.


Subject(s)
Huntington Disease , Animals , Mice , Huntington Disease/metabolism , Gene Knock-In Techniques , Disease Models, Animal , Cognition , Drug Discovery
16.
Int J Biol Macromol ; 217: 775-791, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-35839956

ABSTRACT

Alzheimer's disease (AD) is a devastating neurological disorder characterized by the pathological accumulation of macromolecular Aß and tau leading to neuronal death. Drugs approved to treat AD may ameliorate disease symptoms, however, no curative treatment exists. Aß peptides were discovered to be substrates of adenosine triphosphate-(ATP)-binding cassette (ABC) transporters. Activators of these membrane-bound efflux proteins that promote binding and/or translocation of Aß could revolutionize AD medicine. The knowledge about ABC transporter activators is very scarce, however, the few molecules that were reported contain substructural features of multitarget (pan-)ABC transporter inhibitors. A cutting-edge strategy to obtain new drug candidates is to explore and potentially exploit the recently proposed multitarget binding site of pan-ABC transporter inhibitors as anchor point for the development of innovative activators to promote Aß clearance from the brain. Molecular associations between functional bioactivities and physicochemical properties of small-molecules are key to understand these processes. This study provides an analysis of a recently reported unique multitarget dataset for the correlation between multitarget bioactivity and physicochemistry. Six novel pan-ABC transporter inhibitors were validated containing substructural features of ABC transporter activators, which underpins the relevance of the multitarget binding site for the targeted development of novel AD diagnostics and therapeutics.


Subject(s)
Alzheimer Disease , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , ATP-Binding Cassette Transporters/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Biological Transport , Brain/metabolism , Chemical Phenomena , Humans
17.
Sci Data ; 9(1): 446, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35882865

ABSTRACT

Multitarget datasets that correlate bioactivity landscapes of small-molecules toward different related or unrelated pharmacological targets are crucial for novel drug design and discovery. ATP-binding cassette (ABC) transporters are critical membrane-bound transport proteins that impact drug and metabolite distribution in human disease as well as disease diagnosis and therapy. Molecular-structural patterns are of the highest importance for the drug discovery process as demonstrated by the novel drug discovery tool 'computer-aided pattern analysis' ('C@PA'). Here, we report a multitarget dataset of 1,167 ABC transporter inhibitors analyzed for 604 molecular substructures in a statistical binary pattern distribution scheme. This binary pattern multitarget dataset (ABC_BPMDS) can be utilized for various areas. These areas include the intended design of (i) polypharmacological agents, (ii) highly potent and selective ABC transporter-targeting agents, but also (iii) agents that avoid clearance by the focused ABC transporters [e.g., at the blood-brain barrier (BBB)]. The information provided will not only facilitate novel drug prediction and discovery of ABC transporter-targeting agents, but also drug design in general in terms of pharmacokinetics and pharmacodynamics.


Subject(s)
ATP-Binding Cassette Transporters , Pharmaceutical Preparations , ATP-Binding Cassette Transporters/antagonists & inhibitors , Drug Design , Drug Discovery , Humans
18.
Int J Mol Sci ; 23(12)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35742960

ABSTRACT

Multidrug resistance-associated protein 1 (MRP1, encoded by the ABCC1 gene) may contribute to the clearance of amyloid-beta (Aß) peptides from the brain into the blood and stimulation of MRP1 transport activity may be a therapeutic approach to enhance brain Aß clearance. In this study, we assessed the effect of thiethylperazine, an antiemetic drug which was shown to stimulate MRP1 activity in vitro and to decrease Aß load in a rapid ß-amyloidosis mouse model (APP/PS1-21), on MRP1 transport activity by means of positron emission tomography (PET) imaging with the MRP1 tracer 6-bromo-7-[11C]methylpurine. Groups of wild-type, APP/PS1-21 and Abcc1(-/-) mice underwent PET scans before and after a 5-day oral treatment period with thiethylperazine (15 mg/kg, once daily). The elimination rate constant of radioactivity (kelim) was calculated from time-activity curves in the brain and the lungs as a measure of tissue MRP1 activity. Treatment with thiethylperazine had no significant effect on MRP1 activity in the brain and the lungs of wild-type and APP/PS1-21 mice. This may either be related to a lack of an MRP1-stimulating effect of thiethylperazine in vivo or to other factors, such as substrate-dependent MRP1 stimulation, insufficient target tissue exposure to thiethylperazine or limited sensitivity of the PET tracer to measure MRP1 stimulation.


Subject(s)
Alzheimer Disease , Thiethylperazine , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/diagnostic imaging , Brain/metabolism , Disease Models, Animal , Mice , Mice, Transgenic , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Positron-Emission Tomography/methods , Presenilin-1/genetics , Thiethylperazine/metabolism
19.
EMBO Rep ; 23(7): e54405, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35620875

ABSTRACT

Findings of early cerebral amyloid-ß deposition in mice after peripheral injection of amyloid-ß-containing brain extracts, and in humans following cadaveric human growth hormone treatment raised concerns that amyloid-ß aggregates and possibly Alzheimer's disease may be transmissible between individuals. Yet, proof that Aß actually reaches the brain from the peripheral injection site is lacking. Here, we use a proteomic approach combining stable isotope labeling of mammals and targeted mass spectrometry. Specifically, we generate 13 C-isotope-labeled brain extracts from mice expressing human amyloid-ß and track 13 C-lysine-labeled amyloid-ß after intraperitoneal administration into young amyloid precursor protein-transgenic mice. We detect injected amyloid-ß in the liver and lymphoid tissues for up to 100 days. In contrast, injected 13 C-lysine-labeled amyloid-ß is not detectable in the brain whereas the mice incorporate 13 C-lysine from the donor brain extracts into endogenous amyloid-ß. Using a highly sensitive and specific proteomic approach, we demonstrate that amyloid-ß does not reach the brain from the periphery. Our study argues against potential transmissibility of Alzheimer's disease while opening new avenues to uncover mechanisms of pathophysiological protein deposition.


Subject(s)
Alzheimer Disease , Prions , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/metabolism , Disease Models, Animal , Humans , Isotopes , Lysine , Mammals/metabolism , Mice , Mice, Transgenic , Prions/metabolism , Proteomics
20.
Cancer Rep (Hoboken) ; 5(8): e1555, 2022 08.
Article in English | MEDLINE | ID: mdl-34541832

ABSTRACT

BACKGROUND: The rapidly expanding era of "omics" research is highly dependent on the availability of quality-proven biological material, especially for rare conditions such as pediatric malignancies. Professional biobanks provide such material, focusing on standardized collection and handling procedures, distinctive quality measurements, traceability of storage conditions, and accessibility. For pediatric malignancies, traditional tumor biobanking is challenging due to the rareness and limited amount of tissue and blood samples. The higher molecular heterogeneity, lower mutation rates, and unique genomic landscapes, however, renders biobanking of this tissue even more crucial. AIM: The aim of this study was to test and establish methods for a prospective and centralized biobank for infants, children, and adolescents up to 18 years of age diagnosed with cancer in Norway. METHODS: Obtain judicial and ethical approvals and administration through a consortium, steering committee, and advisory board. Develop pipelines including SOPs for all aspects in the biobank process, including collection, processing and storing of samples and data, as well of quality controlling, safeguarding, distributing, and transport. RESULTS: The childhood cancer biobanking started at Oslo University Hospital in March 2017 and was from 2019 run as a national Norwegian Childhood Cancer Biobank. Informed consent and biological samples are collected regionally and stored centrally. Approximately 12 000 samples from 510 patients and have been included by January 1, 2021, representing a 96% consent and participation rate among our newly diagnosed patients. CONCLUSION: A well-functioning nationwide collection and centralized biobank with standardized procedures and national storage for pediatric malignancies has been established with a high acceptance among families.


Subject(s)
Biological Specimen Banks , Neoplasms , Adolescent , Child , Genomics , Humans , Neoplasms/diagnosis , Neoplasms/epidemiology , Norway/epidemiology , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...