Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 53(32): 4501-4504, 2017 Apr 18.
Article in English | MEDLINE | ID: mdl-28383084

ABSTRACT

We report a visible light responsive moiety capable of generating highly reactive thioaldehydes. Upon irradiation with visible light (420 nm) the pyreneacyl sulfide species undergoes a Norrish II elimination yielding thioaldehydes capable of being trapped by nucleophiles (amines, aminoxys, and thiols), as well as Diels-Alder processes, representing a new versatile ligation platform.

2.
Angew Chem Int Ed Engl ; 55(4): 1514-8, 2016 Jan 22.
Article in English | MEDLINE | ID: mdl-26663567

ABSTRACT

We show that, all other conditions being equal, bond cleavage in the middle of molecules is entropically much more favored than bond cleavage at the end. Multiple experimental and theoretical approaches have been used to study the selectivity for bond cleavage or dissociation in the middle versus the end of both covalent and supramolecular adducts and the extensive implications for other fields of chemistry including, e.g., chain transfer, polymer degradation, and control agent addition are discussed. The observed effects, which are a consequence of the underlying entropic factors, were predicted on the basis of simple theoretical models and demonstrated via high-temperature (HT) NMR spectroscopy of self-assembled supramolecular diblock systems as well as temperature-dependent size-exclusion chromatography (TD SEC) of covalently bonded Diels-Alder step-growth polymers.

3.
Chem Sci ; 6(2): 1061-1074, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-29560194

ABSTRACT

We report the investigation of fundamental entropic chain effects that enable the tuning of modular ligation chemistry - for example dynamic Diels-Alder (DA) reactions in materials applications - not only classically via the chemistry of the applied reaction sites, but also via the physical and steric properties of the molecules that are being joined. Having a substantial impact on the reaction equilibrium of the reversible ligation chemistry, these effects are important when transferring reactions from small molecule studies to larger or other entropically very dissimilar systems. The effects on the DA equilibrium and thus the temperature dependent degree of debonding (%debond) of different cyclopentadienyl (di-)functional poly(meth-)acrylate backbones (poly(methyl methacrylate), poly(iso-butyl methacrylate), poly(tert-butyl methacrylate), poly(iso-butyl acrylate), poly(n-butyl acrylate), poly(tert-butyl acrylate), poly(methyl acrylate) and poly(isobornyl acrylate)), linked via a difunctional cyanodithioester (CDTE) were examined via high temperature (HT) NMR spectroscopy as well as temperature dependent (TD) SEC measurements. A significant impact of not only chain mass and length with a difference in the degree of debonding of up to 30% for different lengths of macromonomers of the same polymer type but - remarkably - as well the chain stiffness with a difference in bonding degrees of nearly 20% for isomeric poly(butyl acrylates) is found. The results were predicted, reproduced and interpreted via quantum chemical calculations, leading to a better understanding of the underlying entropic principles.

4.
ACS Macro Lett ; 4(7): 774-777, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-35596475

ABSTRACT

We report the transfer of entropic chain length effects into the realm of supramolecular chemistry and thereby demonstrate a macromolecular method to tune the reaction equilibria of hydrogen bonding motifs via the application of substituents of differing lengths and masses while not altering the actual recognition units to achieve a difference in the degree of association. The supramolecular adducts are characterized via temperature-dependent nuclear magnetic resonance (NMR) spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL
...