Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Cachexia Sarcopenia Muscle ; 7(2): 165-80, 2016 05.
Article in English | MEDLINE | ID: mdl-27493870

ABSTRACT

BACKGROUND: The Muscle-specific RING-finger (MuRF) protein family of E3 ubiquitin ligases is important for maintenance of muscular structure and function. MuRF proteins mediate adaptation of striated muscles to stress. MuRF2 and MuRF3 bind to microtubules and are implicated in sarcomere formation with noticeable functional redundancy. However, if this redundancy is important for muscle function in vivo is unknown. Our objective was to investigate cooperative function of MuRF2 and MuRF3 in the skeletal muscle and the heart in vivo. METHODS: MuRF2 and MuRF3 double knockout mice (DKO) were generated and phenotypically characterized. Skeletal muscle and the heart were investigated by morphological measurements, histological analyses, electron microscopy, immunoblotting, and real-time PCR. Isolated muscles were subjected to in vitro force measurements. Cardiac function was determined by echocardiography and working heart preparations. Function of cardiomyocytes was measured in vitro. Cell culture experiments and mass-spectrometry were used for mechanistic analyses. RESULTS: DKO mice showed a protein aggregate myopathy in skeletal muscle. Maximal force development was reduced in DKO soleus and extensor digitorum longus. Additionally, a fibre type shift towards slow/type I fibres occurred in DKO soleus and extensor digitorum longus. MuRF2 and MuRF3-deficient hearts showed decreased systolic and diastolic function. Further analyses revealed an increased expression of the myosin heavy chain isoform beta/slow and disturbed calcium handling as potential causes for the phenotype in DKO hearts. CONCLUSIONS: The redundant function of MuRF2 and MuRF3 is important for maintenance of skeletal muscle and cardiac structure and function in vivo.

2.
Mol Immunol ; 56(4): 720-8, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23933512

ABSTRACT

Lipoteichoic acid (LTA) is the key pathogenic factor of gram-positive bacteria and contributes significantly to organ dysfunction in sepsis, a frequent complication in critical care patients. We hypothesized that LTA directly affects cardiomyocyte function, thus contributing to cardiac failure in sepsis. This study was designed to evaluate the effects of LTA on contractile properties and calcium-transients of isolated adult rat cardiomyocytes. When myocytes were exposed to LTA for 1h prior to analysis, the amplitudes of calcium-transients as well as sarcomere shortening increased to 130% and 142% at 1 Hz stimulation frequency. Relengthening of sarcomeres as well as decay of calcium-transients was accelerated after LTA incubation. Exposure to LTA for 24 h resulted in significant depression of calcium-transients as well as of sarcomere shortening compared to controls. One of the major findings of our experiments is that LTA most likely affects calcium-handling of the cardiomyocytes. The effect is exacerbated by reduced extracellular calcium, which resembles the clinical situation in septic patients. Functionally, an early stimulating effect of LTA with increased contractility of the cardiomyocytes may be an in vitro reflection of early hyperdynamic phases in clinical sepsis. Septic disorders have been shown to induce late hypodynamic states of the contractile myocardium, which is also supported at the single-cell level in vitro by results of our 24h-exposure to LTA.


Subject(s)
Calcium/metabolism , Lipopolysaccharides/pharmacology , Myocytes, Cardiac/drug effects , Sarcomeres/drug effects , Teichoic Acids/pharmacology , Animals , Calcium/pharmacology , Cells, Cultured , Humans , Intracellular Space/drug effects , Intracellular Space/metabolism , Lipopolysaccharides/metabolism , Male , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Rats , Rats, Sprague-Dawley , Sarcomeres/physiology , Sepsis/metabolism , Sepsis/physiopathology , Single-Cell Analysis/methods , Staphylococcus aureus/metabolism , Teichoic Acids/metabolism , Time Factors , Tumor Necrosis Factor-alpha/metabolism
3.
Eur Heart J ; 33(9): 1067-75, 2012 May.
Article in English | MEDLINE | ID: mdl-22362515

ABSTRACT

AIMS: Impaired myocardial sarcoplasmic reticulum calcium ATPase 2a (SERCA2a) activity is a hallmark of failing hearts, and SERCA2a gene therapy improves cardiac function in animals and patients with heart failure (HF). Deregulation of microRNAs has been demonstrated in HF pathophysiology. We studied the effects of therapeutic AAV9.SERCA2a gene therapy on cardiac miRNome expression and focused on regulation, expression, and function of miR-1 in reverse remodelled failing hearts. METHODS AND RESULTS: We studied a chronic post-myocardial infarction HF model treated with AAV9.SERCA2a gene therapy. Heart failure resulted in a strong deregulation of the cardiac miRNome. miR-1 expression was decreased in failing hearts, but normalized in reverse remodelled hearts after AAV9.SERCA2a gene delivery. Increased Akt activation in cultured cardiomyocytes led to phosphorylation of FoxO3A and subsequent exclusion from the nucleus, resulting in miR-1 gene silencing. In vitro SERCA2a expression also rescued miR-1 in failing cardiomyocytes, whereas SERCA2a inhibition reduced miR-1 levels. In vivo, Akt and FoxO3A were highly phosphorylated in failing hearts, but reversed to normal by AAV9.SERCA2a, leading to cardiac miR-1 restoration. Likewise, enhanced sodium-calcium exchanger 1 (NCX1) expression during HF was normalized by SERCA2a gene therapy. Validation experiments identified NCX1 as a novel functional miR-1 target. CONCLUSION: SERCA2a gene therapy of failing hearts restores miR-1 expression by an Akt/FoxO3A-dependent pathway, which is associated with normalized NCX1 expression and improved cardiac function.


Subject(s)
Forkhead Transcription Factors/metabolism , Genetic Therapy/methods , Heart Failure/therapy , MicroRNAs/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Animals , Cells, Cultured , Coronary Vessels , Down-Regulation , Forkhead Box Protein O3 , Lactones/pharmacology , Ligation , Male , Myocytes, Cardiac/drug effects , Random Allocation , Rats , Rats, Sprague-Dawley , Sesquiterpenes/pharmacology , Signal Transduction/physiology , Sodium-Calcium Exchanger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...