Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Inform ; 149: 104548, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38043883

ABSTRACT

BACKGROUND: A major hurdle for the real time deployment of the AI models is ensuring trustworthiness of these models for the unseen population. More often than not, these complex models are black boxes in which promising results are generated. However, when scrutinized, these models begin to reveal implicit biases during the decision making, particularly for the minority subgroups. METHOD: We develop an efficient adversarial de-biasing approach with partial learning by incorporating the existing concept activation vectors (CAV) methodology, to reduce racial disparities while preserving the performance of the targeted task. CAV is originally a model interpretability technique which we adopted to identify convolution layers responsible for learning race and only fine-tune up to that layer instead of fine-tuning the complete network, limiting the drop in performance RESULTS:: The methodology has been evaluated on two independent medical image case-studies - chest X-ray and mammograms, and we also performed external validation on a different racial population. On the external datasets for the chest X-ray use-case, debiased models (averaged AUC 0.87 ) outperformed the baseline convolution models (averaged AUC 0.57 ) as well as the models trained with the popular fine-tuning strategy (averaged AUC 0.81). Moreover, the mammogram models is debiased using a single dataset (white, black and Asian) and improved the performance on an external datasets (averaged AUC 0.8 to 0.86 ) with completely different population (primarily Hispanic patients). CONCLUSION: In this study, we demonstrated that the adversarial models trained only with internal data performed equally or often outperformed the standard fine-tuning strategy with data from an external setting. The adversarial training approach described can be applied regardless of predictor's model architecture, as long as the convolution model is trained using a gradient-based method. We release the training code with academic open-source license - https://github.com/ramon349/JBI2023_TCAV_debiasing.


Subject(s)
Artificial Intelligence , Clinical Decision-Making , Diagnostic Imaging , Racial Groups , Humans , Mammography , Minority Groups , Bias , Healthcare Disparities
SELECTION OF CITATIONS
SEARCH DETAIL
...