Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 145(2): 284-99, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21496646

ABSTRACT

The synaptic insertion or removal of AMPA receptors (AMPAR) plays critical roles in the regulation of synaptic activity reflected in the expression of long-term potentiation (LTP) and long-term depression (LTD). The cellular events underlying this important process in learning and memory are still being revealed. Here we describe and characterize the AAA+ ATPase Thorase, which regulates the expression of surface AMPAR. In an ATPase-dependent manner Thorase mediates the internalization of AMPAR by disassembling the AMPAR-GRIP1 complex. Following genetic deletion of Thorase, the internalization of AMPAR is substantially reduced, leading to increased amplitudes of miniature excitatory postsynaptic currents, enhancement of LTP, and elimination of LTD. These molecular events are expressed as deficits in learning and memory in Thorase null mice. This study identifies an AAA+ ATPase that plays a critical role in regulating the surface expression of AMPAR and thereby regulates synaptic plasticity and learning and memory.


Subject(s)
Adenosine Triphosphatases/metabolism , Neuronal Plasticity , Receptors, AMPA/metabolism , ATPases Associated with Diverse Cellular Activities , Adenosine Triphosphatases/chemistry , Amino Acid Sequence , Animals , Brain/metabolism , Cells, Cultured , Female , Gene Expression Profiling , Humans , Learning , Male , Memory , Mice , Molecular Sequence Data , Rats , Sequence Alignment , Synapses
SELECTION OF CITATIONS
SEARCH DETAIL
...