Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Healthc Mater ; 12(22): e2300076, 2023 09.
Article in English | MEDLINE | ID: mdl-37221957

ABSTRACT

The increasing demand for cost-efficient and user-friendly wearable electronic devices has led to the development of stretchable electronics that are both cost-effective and capable of maintaining sustained adhesion and electrical performance under duress. This study reports on a novel physically crosslinked poly(vinyl alcohol) (PVA)-based hydrogel that serves as a transparent, strain-sensing skin adhesive for motion monitoring. By incorporating Zn2+ into the ice-templated PVA gel, a densified amorphous structure is observed through optical and scanning electron microscopy, and it is found that the material can stretch up to 800% strain according to tensile tests. Fabrication in a binary glycerol:water solvent results in electrical resistance in the kΩ range, a gauge factor of 0.84, and ionic conductivity on the scale of 10-4 S cm-1 , making it a potentially low-cost candidate for a stretchable electronic material. This study characterizes the relationship between improved electrical performance and polymer-polymer interactions through spectroscopic techniques, which play a role in the transport of ionic species through the material.


Subject(s)
Polyvinyl Alcohol , Wearable Electronic Devices , Polymers , Motion , Electric Conductivity , Hydrogels/chemistry , Ions
SELECTION OF CITATIONS
SEARCH DETAIL
...