Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36145271

ABSTRACT

Death-associated protein kinase 1 (DAPK1) is a serine/threonine protein kinase involved in diverse fundamental cellular processes such as apoptosis and autophagy. DAPK1 isoform plays an essential role as a tumor suppressor and inhibitor of metastasis. Consequently, DAPK1 became a promising target protein for developing new anti-cancer agents. In this work, we present the rational design and complete synthetic routes of a novel series of eighteen aryl carboxamide derivatives as potential DAPK1 inhibitors. Using a custom panel of forty-five kinases, a single dose of 10 µM of the picolinamide derivative 4a was able to selectively inhibit DAPK1 kinase by 44.19%. Further investigations revealed the isonicotinamide derivative 4q as a promising DAPK1 inhibitory lead compound with an IC50 value of 1.09 µM. In an in vitro anticancer activity assay using a library of 60 cancer cell lines including blood, lung, colon, CNS, skin, ovary, renal, prostate, and breast cancers, four compounds (4d, 4e, 4o, and 4p) demonstrated high anti-proliferative activity with mean % GI ~70%. Furthermore, the most potent DAPK1 inhibitor (4q) exhibited remarkable activity against leukemia (K-562) and breast cancer (MDA-MB-468) with % GI of 72% and 75%, respectively.

2.
Bioorg Chem ; 116: 105352, 2021 11.
Article in English | MEDLINE | ID: mdl-34562673

ABSTRACT

Since there is no disease-modifying treatment discovered yet for Parkinson's disease (PD), there is still a vital need to develop novel selective monoamine oxidase B (MAO-B) inhibitors as promising therapeutically active candidates for PD patients. Herein, we report the design, synthesis, and full characterization of new twenty-six indole derivatives as potential human MAO-B (hMAO-B) selective inhibitors. Six compounds (2i, 3b-e, and 5) exhibited low micromolar to nanomolar inhibitory activities over hMAO-B; compared to our recently reported N-substituted indole-based lead compound VIII (hMAO-B IC50 = 777 nM), compound 5 (3,4-dichloro-N-(1H-indol-5-yl)benzamide) exhibited 18-fold increase in potency (IC50 = 42 nM). A selectivity study over hMAO-A revealed an excellent selectivity index of compound 5 (SI > 2375) with a 47-fold increase compared to rasagiline (II, a well-known MAO-B inhibitor, SI > 50). A further kinetic evaluation of compound 5 over hMAO-B showed a reversible and competitive mode of inhibition with Ki value of 7 nM. Highly effective permeability and high CNS bioavailability of compound 5 with Pe = 54.49 × 10-6 cm/s were demonstrated. Compound 5 also exhibited a low cytotoxicity profile and a promising neuroprotective effect against the 6-hydroxydopamine-induced neuronal cell damage in PC12 cells, which was more effective than that of rasagiline. Docking simulations on both hMAO-B and hMAO-A supported the in vitro data and served as further molecular evidence. Accordingly, we report the discovery of compound 5 as one of the most potent indole-based MAO-B inhibitors to date which is noteworthy to be further evaluated as a promising agent for PD treatment.


Subject(s)
Drug Discovery , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase/metabolism , Neuroprotective Agents/pharmacology , Animals , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Molecular Structure , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase Inhibitors/chemistry , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Oxidopamine/antagonists & inhibitors , Oxidopamine/pharmacology , PC12 Cells , Rats , Structure-Activity Relationship
3.
Molecules ; 26(17)2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34500757

ABSTRACT

Recently, multitargeted drugs are considered a potential approach in treating cancer. In this study, twelve in-house indole-based derivatives were preliminary evaluated for their inhibitory activities over VEGFR-2, CDK-1/cyclin B and HER-2. Compound 15l showed the most inhibitory activities among the tested derivatives over CDK-1/cyclin B and HER-2. Compound 15l was tested for its selectivity in a small kinase panel. It showed dual selectivity for CDK-1/cyclin B and HER-2. Moreover, in vitro cytotoxicity assay was assessed for the selected series against nine NCI cell lines. Compound 15l showed the most potent inhibitory activities among the tested compounds. A deep in silico molecular docking study was conducted for compound 15l to identify the possible binding modes into CDK-1/cyclin B and HER-2. The docking results revealed that compound 15l displayed interesting binding modes with the key amino acids in the binding sites of both kinases. In vitro and in silico studies demonstrate the indole-based derivative 15l as a selective dual CDK-1 and HER-2 inhibitor. This emphasizes a new challenge in drug development strategies and signals a significant milestone for further structural and molecular optimization of these indole-based derivatives in order to achieve a drug-like property.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Protein Kinase Inhibitors/pharmacology , Small Molecule Libraries/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , CDC2 Protein Kinase , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Receptor, ErbB-2 , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship
4.
Bioorg Chem ; 115: 105233, 2021 10.
Article in English | MEDLINE | ID: mdl-34390968

ABSTRACT

Up to date, the current clinical practice employs only symptomatic treatments for management of Parkinson's disease (PD) but unable to stop disease progression. The discovery of new chemical entities endowed with potent and selective human monoamine oxidase B (hMAO-B) inhibitory activity is a clinically relevant subject. Herein, a structural optimization strategy for safinamide (a well-known second generation hMAO-B inhibitor) afforded a series of thirty-six safinamide-derived new analogs (4aa-bj). Most compounds showed promising inhibitory activities against hMAO-B (>70% inhibition at a single dose concentration of 10 µM), with no apparent effect on hMAO-A at 100 µM. Moreover, while six compounds (4ak, 4as, 4az, 4be, 4bg, and 4bi) exhibited potent double-digit nanomolar activities over hMAO-B with IC50 values of 29.5, 42.2, 22.3, 18.8, 42.2, and 33.9 nM, respectively, three derivatives (4aq, 4at, and 4bf), possessing the same carboxamide moiety (2-pyrazinyl), showed the most potent single-digit nanomolar activities (IC50 = 9.7, 5.1, and 3.9 nM, respectively). Compound 4bf revealed an excellent selectivity index (SI > 25641) with a 29-fold increase compared to safinamide (SI > 892). A structure activity relationship along with molecular docking simulations provided insights into enzyme - inhibitor interactions and a rational for the observed activity. In an in vivo MPTP-induced mouse model of PD, oral administration of compound 4bf significantly protected nigrostriatal dopaminergic neurons as revealed by tyrosine hydroxylase staining and prevented MPTP-induced Parkinsonism as revealed by motor behavioral assays. Accordingly, we present compound 4bf as a novel, highly potent, and selective hMAO-B inhibitor with an effective therapeutic profile for relieving PD.


Subject(s)
Alanine/analogs & derivatives , Benzylamines/pharmacology , Drug Discovery , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase/metabolism , Neuroprotective Agents/pharmacology , Parkinson Disease/drug therapy , Alanine/chemical synthesis , Alanine/chemistry , Alanine/pharmacology , Benzylamines/chemical synthesis , Benzylamines/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase Inhibitors/chemistry , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Parkinson Disease/metabolism , Structure-Activity Relationship
5.
J Enzyme Inhib Med Chem ; 35(1): 1568-1580, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32752896

ABSTRACT

Herein, two new series of N-substituted indole-based analogues were rationally designed, synthesized via microwave heating technology, and evaluated as noteworthy MAO-B potential inhibitors. Compared to the reported indazole-based hits VI and VII, compounds 4b and 4e exhibited higher inhibitory activities over MAO-B with IC50 values of 1.65 and 0.78 µM, respectively. When compared to the modest selectivity index of rasagiline (II, a well-known MAO-B inhibitor, SI > 50), both 4b and 4e also showed better selectivity indices (SI > 60 and 120, respectively). A further kinetic evaluation of the most potent derivative (4e) displayed a competitive mode of inhibition (inhibition constant (K i)/MAO-B = 94.52 nM). Reasonable explanations of the elicited biological activities were presented via SAR study and molecular docking simulation. Accordingly, the remarkable MAO-B inhibitory activity of 4e (N-(1-(3-fluorobenzoyl)-1H-indol-5-yl)pyrazine-2-carboxamide), with its selectivity and competitive inhibition, advocates its potential role as a promising lead worthy of further optimization.


Subject(s)
Drug Discovery , Indoles/pharmacology , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase/metabolism , Dose-Response Relationship, Drug , Humans , Indoles/chemistry , Kinetics , Models, Molecular , Molecular Structure , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase Inhibitors/chemistry , Structure-Activity Relationship
6.
Bioorg Med Chem ; 28(13): 115525, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32371117

ABSTRACT

Aurora kinases (AURKs) were identified as promising druggable targets for targeted cancer therapy. Aiming at the development of novel chemotype of dual AURKA/B inhibitors, herein we report the design and synthesis of three series of 4-anilinoquinoline derivatives bearing a sulfonamide moiety (5a-d, 9a-d and 11a-d). The % inhibition of AURKA/B was determined for all target quinolines, then compounds showed more than 50% inhibition on either of the enzymes, were evaluated further for their IC50 on the corresponding enzyme. In particular, compound 9d displayed potent AURKA/B inhibitory activities with IC50 of 0.93 and 0.09 µM, respectively. Also, 9d emerged as the most efficient anti-proliferative analogue in the US-NCI anticancer assay toward the NCI 60 cell lines panel, with broad spectrum activity against different cell lines from diverse cancer subpanels. Docking studies, confirmed that, the sulfonamide SO2 oxygen was involved in a hydrogen bond with Lys162 and Lys122 in AURKA and AURKB, respectively, whereas, the sulfonamide NH could catch hydrogen bond interaction with the surrounding amino acid residues Lys141, Glu260, and Asn261 in AURKA and Lys101, Glu177, and Asp234 in AURKB. Furthermore, N1 nitrogen of the quinoline scaffold formed an essential hydrogen bond with the hinge region key amino acids Ala213 and Ala173 in AURKA and AURKB, respectively.


Subject(s)
Antineoplastic Agents/chemical synthesis , Aurora Kinase A/antagonists & inhibitors , Aurora Kinase B/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Quinolines/chemical synthesis , Sulfonamides/chemistry , Antineoplastic Agents/pharmacology , Aurora Kinase A/metabolism , Aurora Kinase B/metabolism , Cell Line, Tumor , Cell Proliferation , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/pharmacology , Quinolines/pharmacology
7.
Eur J Med Chem ; 188: 111955, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31893550

ABSTRACT

Selective kinase inhibitors development is a cumbersome task because of ATP binding sites similarities across kinases. On contrast, irreversible allosteric covalent inhibition offers opportunity to develop novel selective kinase inhibitors. Previously, we reported thiazolidine-2,4-dione lead compounds eliciting in vitro irreversible allosteric inhibition of IKK-ß. Herein, we address optimization into in vivo active anti-inflammatory agents. We successfully developed potent IKK-ß inhibitors with the most potent compound eliciting IC50 = 0.20 µM. Cellular assay of a set of active compounds using bacterial endotoxin lipopolysaccharide (LPS)-stimulated macrophages elucidated significant in vitro anti-inflammatory activity. In vitro evaluation of microsomal and plasma stabilities showed that the promising compound 7a is more stable than compound 7p. Finally, in vivo evaluation of 7a, which has been conducted in a model of LPS-induced septic shock in mice, showed its ability to protect mice against septic shock induced mortality. Accordingly, this study presents compound 7a as a novel potential irreversible allosteric covalent inhibitor of IKK-ß with verified in vitro and in vivo anti-inflammatory activity.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , I-kappa B Kinase/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Thiazolidinediones/pharmacology , Allosteric Regulation/drug effects , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , I-kappa B Kinase/metabolism , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , RAW 264.7 Cells , Shock, Septic/drug therapy , Structure-Activity Relationship , Thiazolidinediones/chemical synthesis , Thiazolidinediones/chemistry
8.
Bioorg Chem ; 92: 103261, 2019 11.
Article in English | MEDLINE | ID: mdl-31542718

ABSTRACT

Inhibition of IKK-ß (inhibitor of nuclear factor kappa-B kinase subunit beta) has been broadly documentedas a promising approach for treatment of acute and chronic inflammatory diseases, cancer, and autoimmune diseases. Recently, we have identified a novel class of thiazolidine-2,4-diones as structurally novel modulators for IKK-ß. Herein, we report a hit optimization study via analog synthesis strategy aiming to acquire more potent derivative(s), probe the structure activity relationship (SAR), and get reasonable explanations for the elicited IKK-ß inhibitory activities though an in silico docking simulation study. Accordingly, a new series of eighteen thiazolidine-2,4-dione derivatives was rationally designed, synthesized, identified with different spectroscopic techniques and biologically evaluated as noteworthy IKK-ß potential modulators. Successfully, new IKK-ß potent modulators were obtained, including the most potent analog up-to-date 7m with IC50 value of 260 nM. A detailed structure activity relationship (SAR) was discussed and a mechanistic study for 7m was carried out indicating its irreversible inhibition mode with IKK-ß (Kinact value = 0.01 (min-1). Furthermore, the conducted in silico simulation study provided new insights for the binding modes of this novel class of modulators with IKK-ß.


Subject(s)
Drug Design , I-kappa B Kinase/antagonists & inhibitors , Molecular Docking Simulation , Protein Kinase Inhibitors/pharmacology , Thiazolidinediones/pharmacology , Dose-Response Relationship, Drug , Humans , I-kappa B Kinase/metabolism , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Thiazolidinediones/chemical synthesis , Thiazolidinediones/chemistry
9.
J Enzyme Inhib Med Chem ; 34(1): 1457-1464, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31411080

ABSTRACT

Carbonic anhydrases (CAs, EC 4.2.1.1) are crucial metalloenzymes that are involved in diverse bioprocesses. We report the synthesis and biological evaluation of novel series of benzenesulfonamides incorporating un/substituted ethyl quinoline-3-carboxylate moieties. The newly synthesised compounds were in vitro evaluated as inhibitors of the cytosolic human (h) isoforms hCA I and II. Both isoforms hCA I and II were inhibited by the quinolines reported here in variable degrees: hCA I was inhibited with KIs in the range of 0.966-9.091 µM, whereas hCA II in the range of 0.083-3.594 µM. The primary 7-chloro-6-flouro substituted sulphfonamide derivative 6e (KI = 0.083 µM) proved to be the most active quinoline in inhibiting hCA II, whereas, its secondary sulfonamide analog failed to inhibit the hCA II up to 10 µM, confirming the crucial role of the primary sulphfonamide group, as a zinc-binding group for CA inhibitory activity.


Subject(s)
Carbonic Anhydrase II/antagonists & inhibitors , Carbonic Anhydrase I/antagonists & inhibitors , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/pharmacology , Sulfonamides/chemical synthesis , Sulfonamides/pharmacology , Carbon-13 Magnetic Resonance Spectroscopy , Carbonic Anhydrase Inhibitors/chemistry , Humans , Proton Magnetic Resonance Spectroscopy , Spectrometry, Mass, Electrospray Ionization , Structure-Activity Relationship , Sulfonamides/chemistry , Benzenesulfonamides
10.
Bioorg Chem ; 86: 112-118, 2019 05.
Article in English | MEDLINE | ID: mdl-30685642

ABSTRACT

EGFR inhibitors are well-known as anticancer agents. Quite differently, we report our effort to develop EGFR inhibitors as anti-inflammatory agents. Pyrimidinamide EGFR inhibitors eliciting low micromolar IC50 and the structurally close non-EGFR inhibitor urea analog were synthesized. Comparing their nitric oxide (NO) production inhibitory activity in peritoneal macrophages and RAW 246.7 macrophages indicated that their anti-inflammatory activity in peritoneal macrophages might be a sequence of EGFR inhibition. Further evaluations proved that compound 4d significantly and dose-dependently inhibits LPS-induced iNOS expression and IL-1ß, IL-6, and TNF-α production via NF-κB inactivation in peritoneal macrophages. Compound 4d might serve as a lead compound for development of a novel class of anti-inflammatory EGFR inhibitors.


Subject(s)
Amides/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Benzamides/pharmacology , Inflammation/drug therapy , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Amides/chemical synthesis , Amides/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Benzamides/chemical synthesis , Benzamides/chemistry , Cell Survival/drug effects , Cytokines/antagonists & inhibitors , Cytokines/biosynthesis , Dose-Response Relationship, Drug , Drug Discovery , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Humans , Inflammation/metabolism , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Mice , Molecular Structure , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , RAW 264.7 Cells , Structure-Activity Relationship
11.
Eur J Med Chem ; 157: 268-278, 2018 Sep 05.
Article in English | MEDLINE | ID: mdl-30098482

ABSTRACT

Herein, we report synthesis and evaluation of new twenty-eight pyrazinyl ureas against ß amyloid (Aß)-induced opening of mitochondrial permeability transition pore (mPTP) using JC-1 assay which measures the change of mitochondrial membrane potential (ΔΨm). The neuroprotective effect of seventeen compounds against Aß-induced mPTP opening was superior to that of the standard Cyclosporin A (CsA). Among them, 1-(3-(benzyloxy)pyrazin-2-yl)-3-(3,4-dichlorophenyl)urea (5) effectively maintained mitochondrial function and cell viabilities on ATP assay and MTT assay. Also, hERG channel assay presented safe cardiotoxicity profile for compound 5. In addition, using CDocker algorithm, a molecular docking model presented a plausible explanation for the elicited differences in efficiencies of the synthesized compounds to reduce the green to red fluorescence as indication of mPTP closure. Hence, this report presents compound 5 as the most promising pyrazinyl urea-based mPTP blocker up to date.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid beta-Peptides/antagonists & inhibitors , Mitochondrial Membrane Transport Proteins/drug effects , Neuroprotective Agents/pharmacology , Pyrazines/pharmacology , Urea/pharmacology , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Ether-A-Go-Go Potassium Channels/genetics , Hippocampus/drug effects , Humans , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Models, Molecular , Molecular Structure , Neural Stem Cells/drug effects , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Pyrazines/chemical synthesis , Pyrazines/chemistry , Structure-Activity Relationship , Urea/chemical synthesis , Urea/chemistry
12.
Eur J Med Chem ; 151: 186-198, 2018 May 10.
Article in English | MEDLINE | ID: mdl-29614416

ABSTRACT

Repositioning of the antipsychotic drug trifluoperazine for treatment of glioblastoma, an aggressive brain tumor, has been previously suggested. However, trifluoperazine did not increase the survival time in mice models of glioblastoma. In attempt to identify an effective trifluoperazine analog, fourteen compounds have been synthesized and biologically in vitro and in vivo assessed. Using MTT assay, compounds 3dc and 3dd elicited 4-5 times more potent inhibitory activity than trifluoperazine with IC50 = 2.3 and 2.2 µM against U87MG glioblastoma cells, as well as, IC50 = 2.2 and 2.1 µM against GBL28 human glioblastoma patient derived primary cells, respectively. Furthermore, they have shown a reasonable selectivity for glioblastoma cells over NSC normal neural cell. In vivo evaluation of analog 3dc confirmed its advantageous effect on reduction of tumor size and increasing the survival time in brain xenograft mouse model of glioblastoma. Molecular modeling simulation provided a reasonable explanation for the observed variation in the capability of the synthesized analogs to increase the intracellular Ca2+ levels. In summary, this study presents compound 3dc as a proposed new tool for the adjuvant chemotherapy of glioblastoma.


Subject(s)
Antineoplastic Agents/therapeutic use , Antipsychotic Agents/therapeutic use , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Trifluoperazine/therapeutic use , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antipsychotic Agents/chemistry , Antipsychotic Agents/pharmacology , Brain/drug effects , Brain/metabolism , Brain/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Calcium/metabolism , Cell Line, Tumor , Drug Repositioning , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Mice , Molecular Docking Simulation , Trifluoperazine/analogs & derivatives , Trifluoperazine/pharmacology , Tumor Cells, Cultured
13.
Bioorg Chem ; 75: 393-405, 2017 12.
Article in English | MEDLINE | ID: mdl-29102722

ABSTRACT

Searching for hit compounds within the huge chemical space resembles the attempt to find a needle in a haystack. Cheminformatics-guided selection of few representative molecules of a rationally designed virtual combinatorial library is a powerful tool to confront this challenge, speed up hit identification and cut off costs. Herein, this approach has been applied to identify hit compounds with novel scaffolds able to inhibit EGFR kinase. From a generated virtual library, six 4-aryloxy-5-aminopyrimidine scaffold-derived compounds were selected, synthesized and evaluated as hit EGFR inhibitors. 4-Aryloxy-5-benzamidopyrimidines inhibited EGFR with IC50 1.05-5.37 µM. Cell-based assay of the most potent EGFR inhibitor hit (10ac) confirmed its cytotoxicity against different cancerous cells. In spite of no EGFR, HER2 or VEGFR1 inhibition was elicited by 4-aryloxy-5-(thio)ureidopyrimidine derivatives, cell-based evaluation suggested them as antiproliferative hits acting by other mechanism(s). Molecular docking study provided a plausible explanation of incapability of 4-aryloxy-5-(thio)ureidopyrimidines to inhibit EGFR and suggested a reasonable binding mode of 4-aryloxy-5-benzamidopyrimidines which provides a basis to develop more optimized ligands.


Subject(s)
Benzamides/chemistry , ErbB Receptors/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Benzamides/metabolism , Benzamides/pharmacology , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Design , Drug Evaluation, Preclinical , Drug Screening Assays, Antitumor , ErbB Receptors/metabolism , Humans , Molecular Docking Simulation , Protein Binding/drug effects , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/metabolism , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-1/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-1/metabolism
14.
Eur J Med Chem ; 141: 322-334, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29031076

ABSTRACT

Herein, we report synthesis and evaluation of new twenty six small molecules against ß amyloid (Aß)-induced opening of mitochondrial permeability transition pore (mPTP) using JC-1 assay which measures the change of mitochondrial membrane potential (ΔΨm). The neuroprotective effect of seventeen compounds against Aß-induced mPTP opening was superior to that of the standard Cyclosporin A (CsA). Fifteen derivatives eliciting increased green to red fluorescence percentage less than 40.0% were evaluated for their impact on ATP production, cell viability and neuroprotection against Aß-induced neuronal cell death. Among evaluated compounds, derivatives 9w, 9r and 9k had safe profile regarding ATP production and cell viability. In addition, they exhibited significant neuroprotection (69.3, 51.8 and 48.2% respectively). Molecular modeling study using CDocker algorithm predicted plausible binding modes explaining the elicited mPTP blocking activity. Hence, this study suggests compounds 9w, 9r and 9k as leads for further development of novel therapy to Alzheimer's disease.


Subject(s)
Amyloid beta-Peptides/antagonists & inhibitors , Neuroprotective Agents/pharmacology , Small Molecule Libraries/pharmacology , Thiourea/pharmacology , Amyloid beta-Peptides/toxicity , Animals , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Mice , Mitochondrial Membrane Transport Proteins/drug effects , Mitochondrial Permeability Transition Pore , Models, Molecular , Molecular Structure , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Thiourea/analogs & derivatives , Thiourea/chemistry
15.
Eur J Pharm Sci ; 104: 366-381, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28435076

ABSTRACT

Translocator protein (TSPO) is involved in modulating mitochondrial permeability transition pore (mPTP) opening/closure leading to either apoptotic cell death via opening of mPTP or cell protection mediated by mPTP blocking and hence intercepting mPTP induced apoptosis. Herein, 2-(2-aryloxyphenyl)-1,4-dihydroisoquinolin-3(2H)-one derivatives have been designed and synthesized as new modulators for amyloid-ß-induced mPTP opening. Among all, compound 7c remarkably enhanced mPTP opening while compound 7e showed the highest mPTP blocking activity. Molecular modelling study revealed different binding modes which might underlie the observed opposing biological activities. Both compounds bound to the translocator protein 18kDa (TSPO) in low micromolar range and elicited good profiles on CYP2D6 and CYP1A2. Taken as a whole, this report presents compound 7e as a hit TSPO ligand for treatment of neurodegenerative diseases and compound 7c as a hit TSPO ligand for promoting cell death of cells over-expressing TSPO.


Subject(s)
Amyloid beta-Peptides , Isoquinolines/chemistry , Isoquinolines/pharmacology , Mitochondrial Membrane Transport Proteins/metabolism , Models, Molecular , Animals , Cell Line , Cell Survival/drug effects , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP2D6/metabolism , Ligands , Membrane Potential, Mitochondrial/drug effects , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...