Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Small ; : e2310209, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38634392

ABSTRACT

In this work, the experimental evidence of glass-like phonon dynamics and thermal conductivity in a nanocomposite made of GeTe and amorphous carbon is reported, which is of interest for microelectronics, and specifically phase change memories. It is shown that, the total thermal conductivity is reduced by a factor of three at room temperature with respect to pure GeTe, due to the reduction of both electronic and phononic contributions. This latter, similarly to glasses, is small and weakly increasing with temperature between 100 and 300 K, indicating a mostly diffusive thermal transport and reaching a value of 0.86(7) Wm-1K-1 at room temperature. A thorough investigation of the nanocomposite's phonon dynamics reveals the appearance of an excess intensity in the low energy vibrational density of states, reminiscent of the Boson peak in glasses. These features can be understood in terms of an enhanced phonon scattering at the interfaces, due to the presence of elastic heterogeneities, at wavelengths in the 2-20 nm range. The findings confirm recent simulation results on crystalline/amorphous nanocomposites and open new perspectives in phonon and thermal engineering through the direct manipulation of elastic heterogeneities.

2.
Phys Chem Chem Phys ; 17(30): 19751-8, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26109211

ABSTRACT

The ability of some materials with a perfectly ordered crystal structure to mimic the heat conduction of amorphous solids is a remarkable physical property that finds applications in numerous areas of materials science, for example, in the search for more efficient thermoelectric materials that enable to directly convert heat into electricity. Here, we unveil the mechanism in which glass-like thermal conductivity emerges in tetrahedrites, a family of natural minerals extensively studied in geology and, more recently, in thermoelectricity. By investigating the lattice dynamics of two tetrahedrites of very close compositions (Cu12Sb2Te2S13 and Cu10Te4S13) but with opposite glasslike and crystal thermal transport by means of powder and single-crystal inelastic neutron scattering, we demonstrate that the former originates from the peculiar chemical environment of the copper atoms giving rise to a strongly anharmonic excess of vibrational states.

3.
Phys Rev Lett ; 113(2): 025506, 2014 Jul 11.
Article in English | MEDLINE | ID: mdl-25062208

ABSTRACT

Perfectly crystalline solids are excellent heat conductors. Prominent counterexamples are intermetallic clathrates, guest-host systems with a high potential for thermoelectric applications due to their ultralow thermal conductivities. Our combined experimental and theoretical investigation of the lattice dynamics of a particularly simple binary representative, Ba(8)Si(46), identifies the mechanism responsible for the reduction of lattice thermal conductivity intrinsic to the perfect crystal structure. Above a critical wave vector, the purely harmonic guest-host interaction leads to a drastic transfer of spectral weight to the guest atoms, corresponding to a localization of the propagative phonons.

4.
Nat Commun ; 4: 2559, 2013.
Article in English | MEDLINE | ID: mdl-24096628

ABSTRACT

High-temperature superconductivity emerges from an un-conventional metallic state. This has stimulated strong efforts to understand exactly how Fermi liquids breakdown and evolve into an un-conventional metal. A fundamental question is how Fermi liquid quasiparticle excitations break down in momentum space. Here we show, using angle-resolved photoemission spectroscopy, that the Fermi liquid quasiparticle excitations of the overdoped superconducting cuprate La1.77Sr0.23CuO4 is highly anisotropic in momentum space. The quasiparticle scattering and residue behave differently along the Fermi surface and hence the Kadowaki-Wood's relation is not obeyed. This kind of Fermi liquid breakdown may apply to a wide range of strongly correlated metal systems where spin fluctuations are present.

5.
J Phys Condens Matter ; 23(44): 442202, 2011 Nov 09.
Article in English | MEDLINE | ID: mdl-21997363

ABSTRACT

Recent ab initio studies have theoretically predicted room temperature ferromagnetism in several oxide materials of the type AO(2) in which the cation A(4+) is substituted by a non-magnetic element of the 1 A column. Our purpose is to address experimentally the possibility of magnetism in Ti(1-x)K(x)O(2) compounds. The samples have been synthesized via the solid state route method at equilibrium. Our study has shown that Ti(1-x)K(x)O(2) is thermodynamically unstable and leads to a phase separation, in contradiction with the hypothesis of ab initio calculations. In particular, the crystalline TiO(2) grains appear to be surrounded by K-based phase. The oxidization state of the Ti ion is found to be in Ti(4+) as confirmed from the x-ray photoelectron spectra measurement. Nevertheless, K:TiO(2) compounds exhibit weak paramagnetism with the highest magnetic moment of ~0.5 µ(B) K(-1) but no long-range ferromagnetic order. The observed moment in these compounds remains much smaller than the predicted moment of 3 µ(B) by ab initio calculation. The apparent contradictions between our experiments and first-principles studies are discussed.

6.
Nature ; 469(7329): 189-93, 2011 Jan 13.
Article in English | MEDLINE | ID: mdl-21228872

ABSTRACT

As silicon is the basis of conventional electronics, so strontium titanate (SrTiO(3)) is the foundation of the emerging field of oxide electronics. SrTiO(3) is the preferred template for the creation of exotic, two-dimensional (2D) phases of electron matter at oxide interfaces that have metal-insulator transitions, superconductivity or large negative magnetoresistance. However, the physical nature of the electronic structure underlying these 2D electron gases (2DEGs), which is crucial to understanding their remarkable properties, remains elusive. Here we show, using angle-resolved photoemission spectroscopy, that there is a highly metallic universal 2DEG at the vacuum-cleaved surface of SrTiO(3) (including the non-doped insulating material) independently of bulk carrier densities over more than seven decades. This 2DEG is confined within a region of about five unit cells and has a sheet carrier density of ∼0.33 electrons per square lattice parameter. The electronic structure consists of multiple subbands of heavy and light electrons. The similarity of this 2DEG to those reported in SrTiO(3)-based heterostructures and field-effect transistors suggests that different forms of electron confinement at the surface of SrTiO(3) lead to essentially the same 2DEG. Our discovery provides a model system for the study of the electronic structure of 2DEGs in SrTiO(3)-based devices and a novel means of generating 2DEGs at the surfaces of transition-metal oxides.

7.
Phys Rev Lett ; 105(2): 027004, 2010 Jul 09.
Article in English | MEDLINE | ID: mdl-20867731

ABSTRACT

In high-temperature copper oxide superconductors, a novel magnetic order associated with the pseudogap phase has been identified in two different cuprate families over a wide region of temperature and doping. We report here the observation below 120 K of a similar magnetic ordering in the archetypal cuprate La(2-x)Sr(x)CuO4 (LSCO) system for x=0.085. In contrast with the previous reports, the magnetic ordering in LSCO is only short range with an in-plane correlation length of ∼10 A and is bidimensional (2D). Such a less pronounced order suggests an interaction with other electronic instabilities. In particular, LSCO also exhibits a strong tendency towards stripes ordering at the expense of the superconducting state.

8.
Phys Rev Lett ; 105(26): 267003, 2010 Dec 31.
Article in English | MEDLINE | ID: mdl-21231707

ABSTRACT

We have investigated the electronic states in quasi-one-dimensional CuO chains by microprobe angle resolved photoemission spectroscopy. We find that the quasiparticle Fermi surface consists of six disconnected segments, consistent with recent theoretical calculations that predict the formation of narrow, elongated Fermi surface pockets for coupled CuO chains. In addition, we find a strong renormalization effect with a significant kink structure in the band dispersion. The properties of this latter effect [energy scale (∼40 meV), temperature dependence, and behavior with Zn-doping] are identical to those of the bosonic mode observed in CuO2 planes of high-temperature superconductors, indicating they have a common origin.

9.
Phys Rev Lett ; 103(6): 067204, 2009 Aug 07.
Article in English | MEDLINE | ID: mdl-19792609

ABSTRACT

We have performed high-resolution neutron diffraction and inelastic neutron scattering experiments in the frustrated multiferroic hexagonal compounds RMnO_{3} (R = Ho,Yb,Sc,Y), which provide evidence of a strong magnetoelastic coupling in the whole family. We can correlate the atomic positions, the type of magnetic structure, and the nature of the spin waves whatever the R ion and temperature. The key parameter is the position of the Mn ions in the unit cell with respect to a critical threshold of 1/3, which determines the sign of the coupling between Mn triangular planes.

10.
Phys Rev Lett ; 102(17): 177006, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19518819

ABSTRACT

Inelastic neutron-scattering experiments on the high-temperature superconductor La1.855Sr0.145CuO4 reveal a magnetic excitation gap Delta that decreases continuously upon application of a magnetic field perpendicular to the CuO2 planes. The gap vanishes at the critical field required to induce long-range incommensurate antiferromagnetic order, providing compelling evidence for a field-induced soft-mode driven quantum phase transition.

11.
Phys Rev Lett ; 101(4): 047002, 2008 Jul 25.
Article in English | MEDLINE | ID: mdl-18764357

ABSTRACT

We present angle-resolved photoemission spectroscopy data on moderately underdoped La1.855Sr0.145CuO4 at temperatures below and above the superconducting transition temperature. Unlike previous studies of this material, we observe sharp spectral peaks along the entire underlying Fermi surface in the superconducting state. These peaks trace out an energy gap that follows a simple d-wave form, with a maximum superconducting gap of 14 meV. Our results are consistent with a single gap picture for the cuprates. Furthermore our data on the even more underdoped sample La1.895Sr0.105CuO4 also show sharp spectral peaks, even at the antinode, with a maximum superconducting gap of 26 meV.

12.
Phys Rev Lett ; 98(7): 077004, 2007 Feb 16.
Article in English | MEDLINE | ID: mdl-17359052

ABSTRACT

High-resolution neutron inelastic scattering experiments in applied magnetic fields have been performed on La1.895Sr0.105CuO4 (LSCO). In zero field, the temperature dependence of the low-energy peak intensity at the incommensurate momentum transfer QIC=(0.5,0.5+/-delta,0),(0.5+/-delta,0.5,0) exhibits an anomaly at the superconducting Tc which broadens and shifts to lower temperature upon the application of a magnetic field along the c axis. A field-induced enhancement of the spectral weight is observed, but only at finite energy transfers and in an intermediate temperature range. These observations establish the opening of a strongly downward renormalized spin gap in the underdoped regime of LSCO. This behavior contrasts with the observed doping dependence of most electronic energy features.

13.
Phys Rev Lett ; 99(26): 266604, 2007 Dec 31.
Article in English | MEDLINE | ID: mdl-18233597

ABSTRACT

Inelastic neutron scattering measurements have been performed on YMnO3, aiming to study the interplay between spin and lattice degrees of freedom in this hexagonal multiferroic material. Our study provides evidence for a strong coupling between magnons and phonons, evidenced by the opening of a gap below T(N) in the dispersion of the transverse acoustic phonon mode polarized along the ferroelectric axis. The resulting upper phonon branch is found to lock on one of the spin-wave modes. These findings are discussed in terms of a possible hybridization between the two types of elementary excitations.

14.
Phys Rev Lett ; 96(25): 257001, 2006 Jun 30.
Article in English | MEDLINE | ID: mdl-16907334

ABSTRACT

Resonant magnetic modes with odd and even symmetries were studied by inelastic neutron scattering experiments in the bilayer high-Tc superconductor Y1-xCa+Ba2Cu3O6+y over a wide doping range. The threshold of the spin excitation continuum in the superconducting state, deduced from the energies and spectral weights of both modes, is compared with the superconducting d-wave gap, deduced from electronic Raman scattering in the B1g symmetry on the same samples. Above a critical doping level of delta approximately =0.19, both mode energies and the continuum threshold coincide. We find a simple scaling relationship between the characteristic energies and spectral weights of both modes, which indicates that the resonant modes are bound states in the superconducting energy gap, as predicted by the spin-exciton model of the resonant mode.

15.
Phys Rev Lett ; 96(19): 197001, 2006 May 19.
Article in English | MEDLINE | ID: mdl-16803131

ABSTRACT

One of the leading issues in high-T(c) superconductors is the origin of the pseudogap phase in underdoped cuprates. Using polarized elastic neutron diffraction, we identify a novel magnetic order in the YB(2)Cu(3)O(6+) system. The observed magnetic order preserves translational symmetry of the lattice as proposed for orbital moments in the circulating current theory of the pseudogap state. To date, it is the first direct evidence of a hidden order parameter characterizing the pseudogap phase in high-T(c) cuprates.

16.
Phys Rev Lett ; 93(16): 167001, 2004 Oct 15.
Article in English | MEDLINE | ID: mdl-15525020

ABSTRACT

A detailed inelastic neutron scattering study of the high temperature superconductor YBa2Cu3O6.85 provides evidence of new resonant magnetic features, in addition to the well-known resonant mode at 41 meV: (i) a commensurate magnetic resonance peak at 53 meV with an even symmetry under exchange of two adjacent CuO2 layers, and (ii) high-energy incommensurate resonant spin excitations whose spectral weight is around 54 meV. The locus and the spectral weight of these modes provides unrevealed insight about the momentum shape of the electron-hole spin-flip continuum of d-wave superconductors.

17.
Nature ; 430(7000): 650-4, 2004 Aug 05.
Article in English | MEDLINE | ID: mdl-15295593

ABSTRACT

The fundamental building block of the copper oxide superconductors is a Cu4O4 square plaquette. The plaquettes in most of these materials are slightly distorted to form a rectangular lattice, for which an influential theory predicts that high-transition-temperature (high-T(c)) superconductivity is nucleated in 'stripes' aligned along one of the axes. This theory received strong support from experiments that indicated a one-dimensional character for the magnetic excitations in the high-T(c) material YBa2Cu3O6.6 (ref. 4). Here we report neutron scattering data on 'untwinned' YBa2Cu3O6+x crystals, in which the orientation of the rectangular lattice is maintained throughout the entire volume. Contrary to the earlier claim, we demonstrate that the geometry of the magnetic fluctuations is two-dimensional. Rigid stripe arrays therefore appear to be ruled out over a wide range of doping levels in YBa2Cu3O6+x, but the data may be consistent with liquid-crystalline stripe order. The debate about stripes has therefore been reopened.

18.
Phys Rev Lett ; 91(23): 237002, 2003 Dec 05.
Article in English | MEDLINE | ID: mdl-14683208

ABSTRACT

A detailed inelastic neutron scattering study of the overdoped high temperature copper oxide superconductor Y(0.9)Ca(0.1)Ba(2)Cu(3)O(7) reveals two-distinct magnetic resonant modes in the superconducting state. The modes differ in their symmetry with respect to exchange between adjacent copper oxide layers. Counterparts of the mode with odd symmetry, but not the one with even symmetry, had been observed before at lower doping levels. The observation of the even mode resolves a long-standing puzzle, and the spectral weight ratio of both modes yields an estimate of the onset of particle-hole spin-flip excitations.

19.
Science ; 295(5557): 1045-7, 2002 Feb 08.
Article in English | MEDLINE | ID: mdl-11809938

ABSTRACT

An unusual spin excitation mode observed by neutron scattering has inspired numerous theoretical studies of the interplay between charged quasiparticles and collective spin excitations in the copper oxide high-temperature superconductors. The mode has, thus far, only been observed in materials with crystal structures consisting of copper oxide bilayers, and it is absent in the single-layer compound La(2-x)Sr(x)CuO(4+delta). Neutron-scattering data now show that the mode is present in Tl(2)Ba(2)CuO(6+delta), a single-layer compound with a superconducting transition temperature of approximately 90 kelvin, demonstrating that it is a generic feature of the copper oxide superconductors, independent of the layer sequence. This restricts the theoretical models for the origin of the resonant mode and its role in the mechanism of high-temperature superconductivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...