Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Virus Res ; 339: 199262, 2024 01 02.
Article in English | MEDLINE | ID: mdl-37931881

ABSTRACT

Infection with equid herpesvirus 1 (EHV-1), a DNA virus of the Herpesviridae family represents a significant welfare issue in horses and a great impact on the equine industry. During EHV-1 infection, entry of the virus into different cell types is complex due to the presence of twelve glycoproteins (GPs) on the viral envelope. To investigate virus entry mechanisms, specific combinations of GPs were pseudotyped onto lentiviral vectors. Pseudotyped virus (PV) particles bearing gB, gD, gH and gL were able to transduce several target cell lines (HEK293T/17, RK13, CHO-K1, FHK-Tcl3, MDCK I & II), demonstrating that these four EHV-1 glycoproteins are both essential and sufficient for cell entry. The successful generation of an EHV-1 PV permitted development of a PV neutralisation assay (PVNA). The efficacy of the PVNA was tested by measuring the level of neutralising serum antibodies from EHV-1 experimentally infected horses (n = 52) sampled in a longitudinal manner. The same sera were assessed using a conventional EHV-1 virus neutralisation (VN) assay, exhibiting a strong correlation (r = 0.82) between the two assays. Furthermore, PVs routinely require -80 °C for long term storage and a dry ice cold-chain during transport, which can impede dissemination and utilisation in other stakeholder laboratories. Consequently, lyophilisation of EHV-1 PVs was conducted to address this issue. PVs were lyophilised and pellets either reconstituted immediately or stored under various temperature conditions for different time periods. The recovery and functionality of these lyophilised PVs was compared with standard frozen aliquots in titration and neutralisation tests. Results indicated that lyophilisation could be used to stably preserve such complex herpesvirus pseudotypes, even after weeks of storage at room temperature, and that reconstituted EHV-1 PVs could be successfully employed in antibody neutralisation tests.


Subject(s)
Herpesviridae Infections , Herpesvirus 1, Equid , Herpesvirus 4, Equid , Horse Diseases , Humans , Animals , Horses , Herpesvirus 1, Equid/genetics , HEK293 Cells , Antibodies, Viral , Antibodies, Neutralizing , Herpesviridae Infections/veterinary , Glycoproteins , Herpesvirus 4, Equid/genetics
2.
Vet Res ; 54(1): 18, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36864517

ABSTRACT

Vaccination is one of the most widely used strategies to protect horses against pathogens. However, available equine vaccines often have limitations, as they do not always provide effective, long-term protection and booster injections are often required. In addition, research efforts are needed to develop effective vaccines against emerging equine pathogens. In this review, we provide an inventory of approved adjuvants for equine vaccines worldwide, and discuss their composition and mode of action when available. A wide range of adjuvants are used in marketed vaccines for horses, the main families being aluminium salts, emulsions, polymers, saponins and ISCOMs. We also present veterinary adjuvants that are already used for vaccination in other species and are currently evaluated in horses to improve equine vaccination and to meet the expected level of protection against pathogens in the equine industry. Finally, we discuss new adjuvants such as liposomes, polylactic acid polymers, inulin, poly-ε-caprolactone nanoparticles and co-polymers that are in development. Our objective is to help professionals in the horse industry understand the composition of marketed equine vaccines in a context of mistrust towards vaccines. Besides, this review provides researchers with a list of adjuvants, either approved or at least evaluated in horses, that could be used either alone or in combination to develop new vaccines.


Subject(s)
Adjuvants, Immunologic , Nanoparticles , Horses , Animals , Adjuvants, Immunologic/pharmacology , Vaccination/veterinary , Nanoparticles/therapeutic use , Polymers
3.
Vaccines (Basel) ; 10(12)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36560549

ABSTRACT

Equine influenza virus (EIV) is responsible for recurring outbreaks that are detrimental to the equine industry. Vaccination is key for prevention, but the effectiveness and duration of protection provided by existing vaccines is often insufficient. In order to improve vaccine efficacy, we evaluated the benefit of immune stimulation with inactivated Parapoxvirus ovis (iPPVO) on the antibody response induced by a vaccine boost against EIV. A whole inactivated ISCOMatrix-adjuvanted equine influenza vaccine was administered alone (n = 10) or combined with iPPVO injections at D0, D2 and D4 post vaccination (n = 10) to adult horses that required a vaccine boost 6 months after the last immunization, as now recommended by the WOAH. Antibody levels were measured with the single radial haemolysis (SRH) assay at 1, 3 and 6 months post-vaccination. Results revealed that horses that received iPPVO had higher antibody levels than the control group injected with the EI vaccine alone. Although the vaccine used contains only a clade 1 and European lineage strain, the increase in protective antibodies was also observed against a clade 2 strain. Thus, immune stimulation with iPPVO, a substance already marketed as an immunostimulant, could be used to improve vaccination protocols in horses and potentially other species.

4.
J Vet Intern Med ; 36(6): 1858-1871, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36367340

ABSTRACT

Horses and other equids can be infected with several viruses of the family Flaviviridae, belonging to the genus Flavivirus and Hepacivirus. This consensus statement focuses on viruses with known occurrence in Europe, with the objective to summarize the current literature and formulate clinically relevant evidence-based recommendations regarding clinical disease, diagnosis, treatment, and prevention. The viruses circulating in Europe include West Nile virus, tick-borne encephalitis virus, Usutu virus, Louping ill virus and the equine hepacivirus. West Nile virus and Usutu virus are mosquito-borne, while tick-borne encephalitis virus and Louping ill virus are tick-borne. The natural route of transmission for equine hepacivirus remains speculative. West Nile virus and tick-borne encephalitis virus can induce encephalitis in infected horses. In the British Isle, rare equine cases of encephalitis associated with Louping ill virus are reported. In contrast, equine hepacivirus infections are associated with mild acute hepatitis and possibly chronic hepatitis. Diagnosis of flavivirus infections is made primarily by serology, although cross-reactivity occurs. Virus neutralization testing is considered the gold standard to differentiate between flavivirus infections in horses. Hepacivirus infection is detected by serum or liver RT-PCR. No direct antiviral treatment against flavi- or hepacivirus infections in horses is currently available and thus, treatment is supportive. Three vaccines against West Nile virus are licensed in the European Union. Geographic expansion of flaviviruses pathogenic for equids should always be considered a realistic threat, and it would be beneficial if their detection was included in surveillance programs.


Subject(s)
Encephalitis Viruses, Tick-Borne , Encephalitis , Flaviviridae Infections , Flavivirus Infections , Horse Diseases , West Nile virus , Horses , Animals , Flavivirus Infections/diagnosis , Flavivirus Infections/epidemiology , Flavivirus Infections/prevention & control , Flavivirus Infections/veterinary , Flaviviridae Infections/veterinary , Europe/epidemiology , Encephalitis/veterinary , Horse Diseases/diagnosis , Horse Diseases/epidemiology , Horse Diseases/prevention & control
5.
Vaccines (Basel) ; 10(6)2022 May 26.
Article in English | MEDLINE | ID: mdl-35746463

ABSTRACT

During Australia's first and only outbreak of equine influenza (EI), which was restricted to two northeastern states, horses were strategically vaccinated with a recombinant canarypox-vectored vaccine (rCP-EIV; ProteqFlu™, Merial P/L). The vaccine encoded for haemagglutinin (HA) belonging to two equine influenza viruses (EIVs), including an American and Eurasian lineage subtype that predated the EIV responsible for the outbreak (A/equine/Sydney/07). Racehorses in Victoria (a southern state that remained free of EI) were vaccinated prophylactically. Although the vaccine encoded for (HA) belonged to two EIVs of distinct strains of the field virus, clinical protection was reported in vaccinated horses. Our aim is to assess the extent of humoral immunity in one group of vaccinated horses and interferon-gamma ((EIV)-IFN-γ)) production in the peripheral blood mononuclear cells (PBMCs) of a second population of vaccinated horses. Twelve racehorses at work were monitored for haemagglutination inhibition antibodies to three antigenically distinct equine influenza viruses (EIVs) The EIV antigens included two H3N8 subtypes: A/equine/Sydney/07) A/equine/Newmarket/95 (a European lineage strain) and an H7N7 subtype (A/equine/Prague1956). Cell-mediated immune responses of: seven racehorses following an accelerated vaccination schedule, two horses vaccinated using a conventional regimen, and six unvaccinated horses were evaluated by determining (EIV)-IFN-γ levels. Antibody responses following vaccination with ProteqFlu™ were cross-reactive in nature, with responses to both H3N8 EIV strains. Although (EIV)IFN-γ was clearly detected following the in vitro re-stimulation of PBMC, there was no significant difference between the different groups of horses. Results of this study support reports of clinical protection of Australian horses following vaccination with Proteq-Flu™ with objective evidence of humoral cross-reactivity to the outbreak viral strain A/equine/Sydney/07.

6.
Pathogens ; 11(5)2022 May 04.
Article in English | MEDLINE | ID: mdl-35631060

ABSTRACT

Equid alphaherpesvirus-1 (EHV-1) is one of the main pathogens in horses, responsible for respiratory diseases, ocular diseases, abortions, neonatal foal death and neurological complications such as equine herpesvirus myeloencephalopathy (EHM). Current vaccines reduce the excretion and dissemination of the virus and, therefore, the extent of an epizooty. While their efficacy against EHV-1-induced abortion in pregnant mares and the decreased occurrence of an abortion storm in the field have been reported, their potential efficacy against the neurological form of disease remains undocumented. No antiviral treatment against EHV-1 is marketed and recommended to date. This study aimed to measure the protection induced by valganciclovir (VGCV), the prodrug of ganciclovir, in Welsh mountain ponies experimentally infected with an EHV-1 ORF30-C2254 strain. Four ponies were administered VGCV immediately prior to experimental EHV-1 infection, while another four ponies received a placebo. The treatment consisted in 6.5 mg/kg body weight of valganciclovir administered orally three times the first day and twice daily for 13 days. Clinical signs of disease, virus shedding and viraemia were measured for up to 3 weeks. The severity of the cumulative clinical score was significantly reduced in the treated group when compared with the control group. Shedding of infectious EHV-1 was significantly reduced in the treated group when compared with the control group between Day + 1 (D + 1) and D + 12. Viraemia was significantly reduced in the treated group when compared with the control group. Seroconversion was measured in all the ponies included in the study, irrespective of the treatment received. Oral administration of valganciclovir induced no noticeable side effect but reduced clinical signs of disease, infectious virus shedding and viraemia in ponies experimentally infected with the EHV-1 C2254 variant.

7.
EFSA J ; 20(4): e07230, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35414834

ABSTRACT

Equine herpesvirus-1 (EHV-1) can affect the entire equine sector in EU, and the large outbreak reported in 2021 in Spain drew attention to the needs of the European Commission for scientific advice for the assessment of EHV-1 infection within the framework of Animal Health Law. EHV-1 is considered endemic in the EU; its main risk is linked to the characteristic of producing latent life-long infections. These can reactivate producing clinical disease, which can include respiratory, abortive and possibly fatal neurological forms. From the epidemiological and genomic viewpoint, there are no specific neuropathogenic EHV-1 strains; the respiratory, reproductive and neurological signs are not found to be strain-specific. This was also the case of the virus that caused the outbreak in Valencia (Spain) in 2021, which was genetically closely related to other viruses circulating before in Europe, and did not present the so-called neuropathogenic genotype. The outbreak reported in Valencia was followed by wide geographic spread of the virus possibly due to a delay in diagnosis and late application of biosecurity measures. The recommended and most sensitive diagnostic test for detecting EHV-1 is PCR performed on swabs collected according to the type of clinical signs. Serological assays on paired blood samples can help to detect a recent infection, while no diagnostic methods are available to detect EHV-1 latent infections. Safe movements of horses can be ensured at premovement phase by testing and issuing health certificates, and by isolating animals upon arrival at new premises with regular health monitoring. In case of suspicion, movements should be forbidden and EHV-1 infection early detected/confirmed by validated diagnostic tools. During outbreaks, no movements should be allowed until 21 days after the detection of the last case. In general, vaccination against EHV-1 should be promoted, although this offers limited protection against the neurological form of the disease.

8.
EFSA J ; 20(1): e07036, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35035581

ABSTRACT

Equine Herpesvirus-1 infection has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of: Article 7 on disease profile and impacts, Article 5 on the eligibility of the disease to be listed, Article 9 for the categorisation of the disease according to disease prevention and control measures as in Annex IV and Article 8 on the list of animal species related to Equine Herpesvirus-1 infection. The assessment has been performed following a methodology composed of information collection and compilation, and expert judgement on each criterion at individual and collective level. The outcome is the median of the probability ranges provided by the experts, which indicates whether the criterion is fulfilled (66-100%) or not (0-33%), or whether there is uncertainty about fulfilment (33-66%). For the questions where no consensus was reached, the different supporting views are reported. According to the assessment performed, Equine Herpesvirus-1 infection can be considered eligible to be listed for Union intervention according to Article 5 of the Animal Health Law with 33-90% certainty. According to the criteria as in Annex IV of the AHL related to Article 9 of the AHL for the categorisation of diseases according to the level of prevention and control, it was assessed with less than 1% certainty that EHV-1 fulfils the criteria as in Section 1 (category A), 1-5% for the criteria as in Section 2 (category B), 10-66% for the criteria as in Section 3 (category C), 66-90% for the criteria as in Section 4 (category D) and 33-90% for the criteria as in Section 5 (category E). The animal species to be listed for EHV-1 infection according to Article 8(3) criteria are the species belonging to the families of Equidae, Bovidae, Camelidae, Caviidae, Cervidae, Cricetidae, Felidae, Giraffidae, Leporidae, Muridae, Rhinocerontidae, Tapiridae and Ursidae.

9.
Animals (Basel) ; 11(10)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34679874

ABSTRACT

This study reports the first equine herpesvirus-1 (EHV-1) and equine herpesvirus-4 (EHV-4) seroprevalence investigation in horse populations of Morocco in 24 years. It also aims to determine antibody titers in horses vaccinated under field conditions with a monovalent EHV-1 vaccine. Blood samples were collected from 405 horses, including 163 unvaccinated and 242 vaccinated animals. They were tested using a commercial type-specific enzyme-linked immunosorbent assay (ELISA) and a virus neutralization test (VNT). Overall, 12.8% unvaccinated, and 21.8% vaccinated horses were positive for EHV-1. All samples were positive for EHV-4 when tested with the type-specific ELISA. In the vaccinated group, the VNT revealed a mean antibody titer of 1:49 for EHV-1 and 1:45 for EHV-4. The present study demonstrates that EHV-1 and EHV-4 are endemic in the horse populations in the north of Morocco, with prevalence differences between regions. Furthermore, horses vaccinated with a monovalent EHV-1 vaccine had low antibodies titers. This study highlights the necessity to establish and/or support efficient biosecurity strategies based on sound management of horses and characterize further and potentially improve the efficiency of the EHV vaccines and vaccination protocol used in the field.

10.
Emerg Infect Dis ; 27(10): 2738-2739, 2021 10.
Article in English | MEDLINE | ID: mdl-34546162

ABSTRACT

Equine herpesvirus 1 isolates from a 2021 outbreak of neurologic disease in Europe have a mutation, A713G, in open reading frame 11 not detected in 249 other sequences from equine herpesvirus 1 isolates. This single-nucleotide polymorphism could help identify horses infected with the virus strain linked to this outbreak.


Subject(s)
Herpesviridae Infections/veterinary , Herpesvirus 1, Equid , Horse Diseases , Animals , Epidemiological Monitoring , Europe/epidemiology , Herpesviridae Infections/epidemiology , Herpesvirus 1, Equid/genetics , Horse Diseases/epidemiology , Horses/virology , Open Reading Frames
11.
J Zoo Wildl Med ; 52(2): 774-778, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34130425

ABSTRACT

A herd of seven captive-born Grevy's zebras (Equus grevyi) experienced an outbreak of nasal discharge and sneezing. Clinical signs, including lethargy and anorexia, were severe and acute in three animals, including a 16-mo-old male that died within 48 h. Treatment of two severely affected zebras included valacyclovir (40 mg/kg PO), meloxicam (0.6 mg/kg IM/PO), and cefquinome (2.5 mg/kg IM q48h). An adult female improved rapidly, and clinical signs resolved within 48 h of treatment. Administration of valacyclovir pellets was very complicated in a 2-mo-old female, and death occurred within 48 h. Histologic examination of the two individuals that died revealed severe fibrinonecrotic interstitial pneumonia with prominent hyaline membranes and type II pneumocyte hyperplasia. Additionally, the 16-mo-old male presented systemic endothelial activation with vascular thrombosis and necrosis and mild nonsuppurative meningoencephalitis. Herpesviral DNA was detected in the lungs of both individuals by nested polymerase chain reaction. The nucleic acid sequence of the amplicons showed 100% similarity with previously published equid alphaherpesvirus 9 sequences. Three additional animals developed mild nasal discharge only and recovered spontaneously. The zebras shared housing facilities with other species, including white rhinoceros (Ceratotherium simum), reticulated giraffe (Giraffa camelopardalis reticulata), and several antelope species. None of these animals showed clinical signs. Additionally, nasal swabs and whole blood samples were collected from cohoused white rhinoceroses (n = 3) and springboks (Antidorcas marsupialis, n = 3) as well as nasal swabs from cohoused reticulated giraffes (n = 4). Nucleic acid sequence from equid herpesviruses was not detected in any of these samples. The source of the infection in the zebras remains unclear.


Subject(s)
Disease Outbreaks/veterinary , Equidae , Herpesviridae Infections/veterinary , Varicellovirus/classification , Animals , Animals, Zoo , Antiviral Agents/therapeutic use , Female , Herpesviridae Infections/drug therapy , Herpesviridae Infections/pathology , Herpesviridae Infections/virology , Male , Valacyclovir/therapeutic use
12.
J Equine Vet Sci ; 99: 103397, 2021 04.
Article in English | MEDLINE | ID: mdl-33781435

ABSTRACT

In order to evaluate the effect of three different primary vaccination intervals on EI vaccine response, 21 unvaccinated thoroughbred foals were randomly divided into three groups of 7 and vaccinated with three different intervals of primary immunization (i.e., with 1, 2 or 3 months intervals between V1 and V2, respectively). The antibody response was measured for up to 1 year after the third immunization V3 (administered 6 months after V2) by single radial hemolysis (SRH) assay. All weanlings had seroconverted and exceeded the clinical protection threshold 2 weeks after V2 and 1 month after V3 until the end of the study. Significant differences were measured at the peak of immunity after V2 and for the duration of the immunity gap between V2 and V3. The group with one month primary vaccination interval had a lower immunity peak after V2 (158.05 ± 6.63 mm2) and a wider immunity gap between V2 and V3 (18 weeks) when compared with other groups (i.e., 174.72 ± 6.86 mm2 and 16 weeks for a two months interval, 221.45 ± 14.48 mm2 and 12 weeks for a 3-month interval). The advantage observed in the group with 1 month primary vaccination interval, which induces an earlier protective immunity, is counterbalance with a lower peak of immunity and a wider immunity gap after V2, when compared with foals vaccinated with 2- and 3-month intervals.


Subject(s)
Horse Diseases , Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Animals , Antibodies, Viral , Horse Diseases/prevention & control , Horses , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/veterinary , Vaccination/veterinary
13.
Data Brief ; 33: 106492, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33294504

ABSTRACT

Data presented in this article are associated with the research article "Identification of antiviral compounds against equid herpesvirus-1 using real-time cell assay screening: efficacy of decitabine and valganciclovir alone and in combination" [1]. These data correspond to the in vitro screening of 2,891 potential antiviral compounds against equid herpesvirus-1 (EHV-1) based on impedance measurements using the xCELLigence® RTCA MP System. This dataset includes compounds from three different libraries: i) 1,199 compounds from the Prestwick® Chemical Library, which contains mostly US Food and Drug Administration approved drugs (Prestwick® Chemical, Illkirch, France); ii) 1,651 compounds from the Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN, Caen, France); iii) 41 compounds (called herein in-house antiviral library) selected for their effects against different human viruses. Compounds effective against EHV-1 were selected using the area under normalised curves (AUCn) and the time required for the Cell Index to decrease by 50% after virus infection (CIT50). The full dataset from the screen is made publicly available for further analyses.

14.
Viruses ; 12(10)2020 10 13.
Article in English | MEDLINE | ID: mdl-33066315

ABSTRACT

Equid herpesvirus 1 is one of the most common viral pathogens in the horse population and is associated with respiratory disease, abortion and still-birth, neonatal death and neurological disease. A single point mutation in the DNA polymerase gene (ORF30: A2254G, N752D) has been widely associated with neuropathogenicity of strains, although this association has not been exclusive. This study describes the fortuitous isolation of a strain carrying a new genotype C2254 (H752) from an outbreak in France that lasted several weeks in 2018 and involved 82 horses, two of which showed neurological signs of disease. The strain was characterised as UL clade 10 using the equid herpesvirus 1 (EHV-1) multi-locus sequence typing (MLST) classification but has not been identified or isolated since 2018. The retrospective screening of EHV-1 strains collected between 2016 and 2018 did not reveal the presence of the C2254 mutation. When cultured in vitro, the C2254 EHV-1 strain induced a typical EHV-1 syncytium and cytopathic effect but no significant difference was observed when compared with A2254 and G2254 EHV-1 strains. An experimental infection was carried out on four Welsh mountain ponies to confirm the infectious nature of the C2254 strain. A rapid onset of marked respiratory disease lasting at least 2 weeks, with significant virus shedding and cell-associated viraemia, was observed. Finally, an in vitro antiviral assay using impedance measurement and viral load quantification was performed with three antiviral molecules (ganciclovir (GCV), aciclovir (ACV) and aphidicolin (APD)) on the newly isolated C2254 strain and two other A/G2254 field strains. The three strains showed similar sensitivity to ganciclovir and aphidicolin but both C2254 and A2254 strains were more sensitive to aciclovir than the G2254 strain, based on viral load measurement.


Subject(s)
DNA-Directed DNA Polymerase/genetics , Herpesviridae Infections/veterinary , Herpesvirus 1, Equid/genetics , Herpesvirus 1, Equid/pathogenicity , Viral Proteins/genetics , Animals , Disease Outbreaks/veterinary , France/epidemiology , Genotype , Herpesviridae Infections/virology , Herpesvirus 1, Equid/enzymology , Horse Diseases/epidemiology , Horse Diseases/virology , Horses/virology , Male , Mutation , Open Reading Frames , Retrospective Studies , Viral Load
15.
Antiviral Res ; 183: 104931, 2020 11.
Article in English | MEDLINE | ID: mdl-32926887

ABSTRACT

Equid herpesvirus-1 infections cause respiratory, neurological and reproductive syndromes. Despite preventive treatments with vaccines, resurgence of EHV-1 infection still constitutes a major threat to equine industry. However, no antiviral compound is available to treat infected horses. In this study, 2891 compounds were screened against EHV-1 using impedance measurement. 22 compounds have been found to be effective in vitro against EHV-1. Valganciclovir, ganciclovir, decitabine, aphidicolin, idoxuridine and pritelivir (BAY 57-1293) are the most effective compounds identified, and their antiviral potency was further assessed on E. Derm, RK13 and EEK cells and against 3 different field strains of EHV-1 (ORF30 2254 A/G/C). We also provide evidences of synergistic interactions between valganciclovir and decitabine in our in vitro antiviral assay as determined by MacSynergy II, isobologramm and Chou-Talalay methods. Finally, we showed that deoxycytidine reverts the antiviral effect of decitabine, thus supporting some competition at the level of nucleoside phosphorylation by deoxycytidine kinase and/or DNA synthesis. Deoxycitidine analogues, like decitabine, is a family of compounds identified for the first time with promising antiviral efficacy against herpesviruses.


Subject(s)
Antiviral Agents/pharmacology , Decitabine/pharmacology , Herpesviridae Infections/veterinary , Herpesvirus 1, Equid/drug effects , Valganciclovir/pharmacology , Animals , Cell Line , Drug Combinations , Drug Discovery/methods , Drug Synergism , Ganciclovir/pharmacology , Herpesviridae Infections/drug therapy , Herpesviridae Infections/virology , High-Throughput Screening Assays/methods , Horses , Rabbits
16.
Vaccines (Basel) ; 8(3)2020 Sep 05.
Article in English | MEDLINE | ID: mdl-32899579

ABSTRACT

Respiratory infections are still a major concern in pigs. Amongst the involved viruses, the porcine reproductive and respiratory syndrome virus (PRRSV) and the swine influenza type A virus (swIAV) have a major impact. These viruses frequently encounter and dual infections are reported. We analyzed here the molecular interactions between viruses and porcine tracheal epithelial cells as well as lung tissue. PRRSV-1 species do not infect porcine respiratory epithelial cells. However, PRRSV-1, when inoculated simultaneously or shortly before swIAV, was able to inhibit swIAV H1N2 infection, modulate the interferon response and alter signaling protein phosphorylations (ERK, AKT, AMPK, and JAK2), in our conditions. SwIAV inhibition was also observed, although at a lower level, by inactivated PRRSV-1, whereas acid wash treatment inactivating non-penetrated viruses suppressed the interference effect. PRRSV-1 and swIAV may interact at several stages, before their attachment to the cells, when they attach to their receptors, and later on. In conclusion, we showed for the first time that PRRSV can alter the relation between swIAV and its main target cells, opening the doors to further studies on the interplay between viruses. Consequences of these peculiar interactions on viral infections and vaccinations using modified live vaccines require further investigations.

17.
Vaccines (Basel) ; 8(3)2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32825702

ABSTRACT

Equine influenza is a major respiratory disease of horses that is largely controlled by vaccination in some equine populations. Virus-neutralising antibodies, the mainstay of the protective immune response, are problematic in assaying for equine influenza virus, as most strains do not replicate efficiently in cell culture. Surrogate measures of protective antibody responses include the haemagglutination inhibition (HI) test and single radial haemolysis (SRH) assay. For this study, a pseudotyped virus, bearing an envelope containing the haemagglutinin (HA) from the Florida clade 2 equine influenza virus strain A/equine/Richmond/1/07 (H3N8), was generated to measure HA-specific neutralising antibodies in serum samples (n = 134) from vaccinated or experimentally-infected ponies using a pseudotyped virus neutralization test (PVNT). Overall, the results of PVNT were in good agreement with results from the SRH assay (100% sensitivity, 68.53% specificity) and HI test (99.2% sensitivity, 49.03% specificity). The PVNT was apparently more sensitive than either the SRH assay or the HI test, which could be advantageous for studying the antibody kinetics, particularly when antibody levels are low. Nevertheless, further studies are required to determine whether a protective antibody level can be defined for the SRH assay and to ascertain the inter-laboratory reproducibility. In conclusion, the PVNT efficiently measures neutralising antibodies after immunization and/or experimental infection in the natural host, and may complement existing antibody assays.

18.
Int J Mol Sci ; 21(12)2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32586031

ABSTRACT

Bacterial superantigens (sAgs) are powerful activators of the immune response that trigger unspecific T cell responses accompanied by the release of proinflammatory cytokines. Streptococcus equi (S. equi) and Streptococcus zooepidemicus (S. zooepidemicus) produce sAgs that play an important role in their ability to cause disease. Strangles, caused by S. equi, is one of the most common infectious diseases of horses worldwide. Here, we report the identification of a new sAg of S. zooepidemicus, SpeS, and show that mutation of the putative T cell receptor (TCR)-binding motif (YAY to IAY) abrogated TCR-binding, whilst maintaining interaction with major histocompatibility complex (MHC) class II molecules. The fusion of SpeS and SpeSY39I to six S. equi surface proteins using two different peptide linkers was conducted to determine if MHC class II-binding properties were maintained. Proliferation assays, qPCR and flow cytometry analysis showed that SpeSY39I and its fusion proteins induced less mitogenic activity and interferon gamma expression when compared to SpeS, whilst retaining Antigen-Presenting Cell (APC)-binding properties. Our data suggest that SpeSY39I-surface protein fusions could be used to direct vaccine antigens towards antigen-presenting cells in vivo with the potential to enhance antigen presentation and improve immune responses.


Subject(s)
Adjuvants, Immunologic/chemistry , Bacterial Proteins/immunology , Exotoxins/immunology , Histocompatibility Antigens Class II/immunology , Membrane Proteins/immunology , Streptococcal Infections/prevention & control , Streptococcus equi/immunology , Superantigens/immunology , Vaccines/administration & dosage , Antigen Presentation/immunology , Humans , Membrane Proteins/metabolism , Meningitis , Phylogeny , Receptors, Antigen, T-Cell/metabolism , Streptococcal Infections/immunology , Streptococcal Infections/microbiology , Streptococcus equi/isolation & purification , Vaccines/immunology
20.
Animals (Basel) ; 10(5)2020 May 07.
Article in English | MEDLINE | ID: mdl-32392891

ABSTRACT

The present study described the evolution of antimicrobial resistance in equine pathogens isolated from 2016 to 2019. A collection of 7806 bacterial isolates were analysed for their in vitro antimicrobial susceptibility using the disk diffusion method. The most frequently isolated pathogens were group C Streptococci (27.0%), Escherichia coli (18.0%), Staphylococcus aureus (6.2%), Pseudomonas aeruginosa (3.4%), Klebsiella pneumoniae (2.3%) and Enterobacter spp. (2.1%). The majority of these pathogens were isolated from the genital tract (45.1%, n = 3522). With the implementation of two French national plans (named ECOANTIBIO 1 and 2) in 2012-2016 and 2017-2021, respectively, and a reduction in animal exposure to veterinary antibiotics, our study showed decreases in the resistance of group C Streptococci, Klebsiella pneumoniae and Escherichia coli against five classes, four classes and one class of antimicrobials tested, respectively. However, Staphylococcus aureus, Escherichia coli and Enterobacter spp. presented an increased resistance against all the tested classes, excepted for two fifths of E. coli. Moreover, the percentages of multi-drug resistant strains of Staphylococcus aureus and Enterobacter spp. also increased from 24.5% to 37.4% and from 26.3% to 51.7%, respectively. The data reported here are relevant to equine practitioners and will help to improve knowledge related to antimicrobial resistance in common equine pathogens.

SELECTION OF CITATIONS
SEARCH DETAIL
...