Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Biochem Pharmacol ; 226: 116339, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38848781

ABSTRACT

Sleep is a fundamental state for maintaining the organism homeostasis. Disruptions in sleep patterns predispose to the appearance of memory impairments and mental disorders, including depression. Recent pre-clinical studies have highlighted the antidepressant-like properties of the synthetic compound 2-phenyl-3-(phenylselanyl)benzofuran (SeBZF1). To further investigate the neuromodulatory effects of SeBZF1, this study aimed to assess its therapeutic efficacy in ameliorating neurobehavioral impairments induced by sleep deprivation (SD) in mice. For this purpose, a method known as multiple platforms over water was used to induce rapid eye movement (REM) SD. Two hours after acute SD (24 h), male Swiss mice received a single treatment of SeBZF1 (5 mg/kg, intragastric route) or fluoxetine (a positive control, 20 mg/kg, intraperitoneal route). Subsequently, behavioral tests were conducted to assess spontaneous motor function (open-field test), depressive-like behavior (tail suspension test), and memory deficits (Y-maze test). Brain structures were utilized to evaluate oxidative stress markers, monoamine oxidase (MAO) and acetylcholinesterase (AChE) activities. Our findings revealed that SD animals displayed depressive-like behavior and memory impairments, which were reverted by SeBZF1 and fluoxetine treatments. SeBZF1 also reverted the increase in lipoperoxidation levels and glutathione peroxidase activity in the pre-frontal cortex in mice exposed to SD. Besides, the increase in hippocampal AChE activity induced by SD was overturned by SeBZF1. Lastly, cortical MAO-B activity was reestablished by SeBZF1 in mice that underwent SD. Based on the main findings of this study, it can be inferred that the compound SeBZF1 reverses the neurobehavioral alterations induced by sleep deprivation in male Swiss mice.

2.
Pharmacol Biochem Behav ; 232: 173651, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37793485

ABSTRACT

Anxiety disorders, characterized by high prevalence rates, cause psychiatric disabilities and are related to impairments in serotoninergic system function. Frequent anxiety recurrence, resistance, and drug adverse effects have driven searches for new therapies. We initially evaluated the anxiolytic-like activity of 3-selanyl-benzo[b]furan compounds (SeBZF1-5) (50 mg/kg, i.g.) in male Swiss mice using the light-dark test (LDT). The compound 3-((4-methoxyphenyl)selanyl)-2-phenylbenzofuran (SeBZF3) exhibited anxiolytic-like activity. SeBZF3 anxiolytic-like effects were also observed in the novelty-suppressed feeding test (NSFT) (50 mg/kg) and elevated plus-maze test (EPMT) (25 and 50 mg/kg). In the EPMT, anxiolytic-like effects of SeBZF3 (50 mg/kg) were abolished by pretreatment with p-chlorophenylalanine, a selective tryptophan hydroxylase inhibitor (100 mg/kg, i.p. for 4 days), suggesting the involvement of serotonergic mechanisms. Furthermore, we conducted experiments to investigate the synergistic effects of SeBZF3 subeffective doses (5 mg/kg, i.g.) in combination with fluoxetine (a selective serotonin reuptake inhibitor, 5 mg/kg, i.p.) or buspirone (a partial agonist of the 5-HT1A receptor, 2 mg/kg, i.p.). This coadministration resulted in pronounced synergistic effects. We also examined the effects of repeated oral treatment with SeBZF3 at doses of 1 and 5 mg/kg over 14 days and both reduced anxiety signals. In vitro and ex vivo findings revealed that SeBZF3 inhibited cerebral MAO-A activity. These findings collectively imply the potential involvement of serotonergic mechanisms in the anxiolytic-like activity of SeBZF3 in mice. These data offer contributions to the research field of organoselenium compounds and anxiolytics, encouraging the broadening of the search for new effective drugs while offering improved side effect profiles.

3.
Article in English | MEDLINE | ID: mdl-37075882

ABSTRACT

Synthetic glucocorticoid administration has been reported to play a role in depression and cognitive decline. The present study investigated the 2-phenyl-3-(phenylselanyl)benzofuran (SeBZF1) effects against the depressive-like behavior, memory impairment, and neurochemical alterations caused by acute dexamethasone administration in female Swiss mice. A dexamethasone dose-response curve (0.07-0.5 mg/kg, subcutaneous route, s.c.) was initially performed to validate the depressive-like behavior induction, in which the 0.25 mg/kg dose was more effective. Two experimental sets were performed to test the SeBZF1 (5 and 50 mg/kg, intragastric route, i.g.) pharmacological effect in this animal model. The 1st set revealed that the SeBZF1 reverses the dexamethasone-induced depressive-like behavior in the tail suspension test and in the splash test. In the 2nd experimental set, the compound effects of reversing the depressive-like behavior in the forced swimming test and the memory deficit in the Y-maze test induced by acute treatment with dexamethasone were demonstrated. Furthermore, SeBZF1 reversed the increase in the monoamine oxidase (MAO) activity in the prefrontal cortex (isoforms A and B) and in the hypothalamus (isoform A) caused by dexamethasone. However, no changes were observed in hippocampal MAO activity. Furthermore, animals treated with dexamethasone and SeBZF1 demonstrated a partially lower acetylcholinesterase activity in the prefrontal cortex compared with the induced group. In summary, the present study demonstrated that SeBZF1 reverses depressive-like behavior and memory deficits caused by acute dexamethasone treatment in female Swiss mice. Possibly the compound exerts its antidepressant-like action by increasing the availability of monoamines, while its effects on memory are still partially understood.


Subject(s)
Benzofurans , Cognitive Dysfunction , Animals , Mice , Female , Depression/chemically induced , Depression/drug therapy , Acetylcholinesterase , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Behavior, Animal , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Benzofurans/adverse effects , Monoamine Oxidase , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...