Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biofabrication ; 15(1)2022 11 23.
Article in English | MEDLINE | ID: mdl-36327453

ABSTRACT

Therapies to deep burn injuries remain a global challenge. Human amniotic membrane (hAM) is a biomaterial that has been increasingly explored by the field of regenerative medicine. A decellularized hAM (DhAM) can be used as scaffold for mesenchymal stromal cells (MSCs) to grow without the loss of their stemness potential, allowing its application as cell therapy for wound healing. In this work, we associated DhAM with adipose-derived MSCs (DhAM + AD-MSCs), as a therapy strategy for second-degree burns in a preclinical model. Animals with induced second-degree burns were divided into four groups: control, which consists of a non-adherent gauze; a synthetic commercial dressing as the positive control (Control+); DhAM; and DhAM plus rat AD-MSCs (DhAM + AD-MSCs), followed by detailed and long term analysis (5 weeks). The macroscopical analysis showed the healing improvement in the wound area after the DhAM + AD-MSC treatment. Histological analysis also showed no alteration in the animal organs and a regular epithelial progression in comparison to the control. This observation was also confirmed by the analysis of suprabasal layers in the neoepidermis with CK10, showing a stratified and differentiated epithelium, when compared to Control and Control+. A strong CD73 (ecto-5'-nucleotidase) labeling was observed in the first 2 weeks postburn in dermis and epidermis. The expression in dermis was stronger in the second week in the middle of the wound, when comparing the Control+ with DhAM + AD-MSCs (p= 0.0238). In the epidermis the expression of CD73 was increased in all regions when compared to the control. This data suggests the involvement of this protein on wound healing. A low CD11b labeling was observed in DhAM + AD-MSCs treatment group mainly in the last treatment week, in comparison to Control and Control+ (p< 0.0001), which indicates a reduction in the inflammatory process. MSCs through CD73 can release high concentrations of adenosine, an immunosuppressive molecule, suggesting that this could be the mechanism by which the inflammation was better modulated in the DhAM + AD-MSCs group. The results obtained with this preclinical model confirm the effectiveness and safety of this low-cost and highly available dressing for future clinical application as a therapy for burn treatments.


Subject(s)
Burns , Mesenchymal Stem Cells , Humans , Rats , Animals , Amnion/pathology , Mesenchymal Stem Cells/metabolism , Burns/therapy , Burns/metabolism , Wound Healing , Cell Differentiation
2.
Mater Sci Eng C Mater Biol Appl ; 131: 112532, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34857310

ABSTRACT

Metal injection molding (MIM) has become an important manufacturing technology for biodegradable medical devices. As a biodegradable metal, pure iron is a promising biomaterial due to its mechanical properties and biocompatibility. In light of this, we performed the first study that manufactured and evaluated the in vitro and in vivo biocompatibility of samples of iron porous implants produced by MIM with a new eco-friendly feedstock from natural rubber (Hevea brasiliensis), a promisor binder that provides elastic property in the green parts. The iron samples were submitted to tests to determine density, microhardness, hardness, yield strength, and stretching. The biocompatibility of the samples was studied in vitro with adipose-derived mesenchymal stromal cells (ADSCs) and erythrocytes, and in vivo on a preclinical model with Wistar rats, testing the iron samples after subcutaneous implant. Results showed that the manufactured samples have adequate physical, and mechanical characteristics to biomedical devices and they are cytocompatible with ADSCs, hemocompatible and biocompatible with Wistars rats. Therefore, pure iron produced by MIM can be considered a promising material for biomedical applications.


Subject(s)
Hevea , Iron , Animals , Biocompatible Materials/pharmacology , Materials Testing , Porosity , Rats , Rats, Wistar , Rubber
3.
Mater Sci Eng C Mater Biol Appl ; 115: 111129, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32600726

ABSTRACT

Biodegradable metallic materials (BMMs) are expected to corrode gradually in vivo after providing the structural support to the tissue during its regeneration and healing processes. These characteristics make them promising candidates for use in stents. These endoprostheses are produced from metal alloys by casting and thermomechanical treatment. Since porous alloys and metals have less corrosion resistance than dense ones, the use of powder metallurgy becomes an option to produce them. Among the metals, iron has been proposed as a material in the manufacturing of stents because of its mechanical properties. However, even then it is unclear what toxicity threshold is safe to the body. Thus, the objective of this research was to verify the biocompatibility of sintered 99.95% and 99.5% pure iron by powder metallurgy in vitro with Adipose-derived mesenchymal stromal cells (ADSCs) and in vivo with a Wistar rat model. Herein, characterizations of iron powder samples produced by the powder metallurgy and the process parameters as compression pressure, atmosphere, sintering time and temperature were determined to evaluate the potential of production of biodegradable implants. The samples obtained from pure iron were submitted to tests of green and sintered density, porosity, microhardness, hardness and metallography. The biocompatibility study was performed by indirect and direct cell culture with iron. The effects of corrosion products of iron on morphology, viability, and proliferation of ADSCs were evaluated in vitro. Hemolysis assay was performed to verify the hemocompatibility of the samples. In vivo biocompatibility was evaluated after pure iron discs were implanted subcutaneously into the dorsal area of Wistar rats that were followed up to 6 months. The results presented in this paper validated the potential to produce biodegradable medical implants by powder metallurgy. Both iron samples were hemocompatible and biocompatible in vitro and in vivo, although the 99.95% iron had better performance in vitro than 99.5%.


Subject(s)
Adipose Tissue/cytology , Biocompatible Materials/administration & dosage , Iron/chemistry , Absorbable Implants , Alloys , Animals , Biocompatible Materials/chemistry , Cell Proliferation , Cell Survival , Cells, Cultured , Female , Humans , Materials Testing , Mesenchymal Stem Cells/cytology , Metallurgy , Porosity , Powders , Rats , Rats, Wistar
4.
Mater Sci Eng C Mater Biol Appl ; 103: 109781, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31349402

ABSTRACT

Bioactive glasses have potential applications in the field of regenerative medicine due to their bioactivity that permits interaction with both hard and soft tissues. In the same way, mesenchymal stromal cells (MSCs) have been experimentally tested as part of engineered constructs considering their self-renewal and multipotent capacities. However, to design an association, it is crucial to investigate the physical properties of bioglass 45S5, as well as its biocompatibility. Therefore, we investigated the structural short range order of the stoichiometric 45S5, by obtaining its total structure factors (S(K)) and total pair distribution function G(r). The in vitro compatibility of human MSCs with 45S5 was verified by viability, morphometry and osteoinduction assays, F-actin staining and scanning electron (SEM) analysis. The compatibility outcome was verified through a subcutaneous implantation in a murine model by grafting the 45S5 as a scaffold for allogeneic MSCs. The cell-substrate modulation includes the maintenance of the MSC viability and osteoinduction potential after being exposed to the 45S5 extract. A low spreading during cell adhesion was detected. Both normal actin cytoskeleton organization and nuclei irregularities were observed, besides an increase of hydroxyapatite (HA) depositions around cells. Cells showed satisfactory compatibility patterns when growing over 45S5 for 7, 30 and 90 days. The implant did not show any apparent toxicity for organs, or strong immunogenic reactions, and it was accompanied by a dense capsule formation around the graft. Our results indicate that MSCs can grow in the long term on the 45S5 while maintaining their characteristics. This fact, together with a non-toxicity to animals means that the 45S5 can be implemented in pre-clinical trials aiming MSC's transplantation leading to further bone and tissue repair.


Subject(s)
Adipose Tissue/metabolism , Ceramics/chemistry , Glass/chemistry , Materials Testing , Mesenchymal Stem Cells/metabolism , Tissue Scaffolds/chemistry , Adipose Tissue/cytology , Animals , Cell Adhesion , Cell Survival , Humans , Mesenchymal Stem Cells/cytology , Mice , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL
...