Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 101(18): 6929-33, 2004 May 04.
Article in English | MEDLINE | ID: mdl-15118100

ABSTRACT

Mate attraction in Aplysia involves a long-distance water-borne signal (the protein pheromone attractin), which is released during egg laying. Aplysia californica attractin attracts species that produce closely related attractins, such as Aplysia brasiliana, whose geographic distribution does not overlap that of A. californica. This finding suggests that other mollusks release attractin-related pheromones to form and maintain breeding aggregations. We describe four additional members of the attractin family: A. brasiliana, Aplysia fasciata, Aplysia depilans (which aggregates with A. fasciata aggregations), and Aplysia vaccaria (which aggregates with A. californica aggregations). On the basis of their sequence similarity with A. californica attractin, the attractin proteins fall into two groups: A. californica, A. brasiliana, and A. fasciata (91-95% identity), and A. depilans and A. vaccaria (41-43% identity). The sequence similarity within the attractin family, the conserved six cysteines, and the compact fold of the NMR solution structure of A. californica attractin suggest a common fold for this pheromone family containing two antiparallel helices. The second helix contains the IEECKTS sequence conserved in Aplysia attractins. Mutating surface-exposed charged residues within this heptapeptide sequence abolishes attractin activity, suggesting that the second helix is an essential part of the receptor-binding interface.


Subject(s)
Aplysia/chemistry , Aplysia/physiology , Glycoproteins/chemistry , Glycoproteins/physiology , Pheromones/chemistry , Pheromones/physiology , Amino Acid Sequence , Animals , Glycoproteins/isolation & purification , Molecular Sequence Data , Pheromones/isolation & purification , Sequence Analysis, Protein , Species Specificity
2.
Peptides ; 24(8): 1117-22, 2003 Aug.
Article in English | MEDLINE | ID: mdl-14612181

ABSTRACT

Mate attraction in Aplysia involves long-distance water-borne signaling via the secretion of the peptide pheromone attractin from the exocrine albumen gland during egg laying. Previous studies have shown that a second exocrine organ, the atrial gland, produces abundant egg-laying hormone (ELH) precursor-related peptides and mollusk-derived growth factor (MDGF), and crude extracts of the atrial gland are attractive in T-maze attraction assays. However, it is not known whether these peptides and proteins are secreted during egg laying. In this report, seawater eluates of freshly laid egg cordons were concentrated and fractionated by C18 RP-HPLC, and the resulting major peaks were examined by amino acid compositional analysis, microsequence analysis, and electrospray mass spectrometry. Concentrated egg cordon eluates were also examined by immunoblot analysis using anti-MDGF antisera as probe. The combined data demonstrated that the atrial gland of Aplysia californica does not secrete detectable levels of either ELH precursor-related peptides or MDGF during egg laying. Although the atrial gland is the last major exocrine organ to make contact with eggs before they are laid, the gland does not appear to secrete water-borne peptide pheromones during egg laying.


Subject(s)
Aplysia/physiology , Invertebrate Hormones/physiology , Pheromones/physiology , Adenosine Deaminase , Animals , Female , Intercellular Signaling Peptides and Proteins/physiology
3.
Biochemistry ; 42(33): 9970-9, 2003 Aug 26.
Article in English | MEDLINE | ID: mdl-12924946

ABSTRACT

Water-borne protein pheromones are essential for coordination of reproductive activities in many marine organisms. In this paper, we describe the first structure of a pheromone protein from a marine organism, that of attractin (58 residues) from Aplysia californica. The NMR solution structure was determined from TOCSY, NOESY, and DQF-COSY measurements of recombinant attractin expressed in insect cells. The sequential resonance assignments were done with standard manual procedures. Approximately 90% of the 949 unambiguous NOESY cross-peaks were assigned automatically with simultaneous three-dimensional structure calculation using our NOAH/DIAMOD/FANTOM program suite. The final bundle of energy-refined structures is well-defined, with an average rmsd value to the mean structure of 0.72 +/- 0.12 A for backbone and 1.32 +/- 0.11 A for heavy atoms for amino acids 3-47. Attractin contains two antiparallel helices, made up of residues Ile9-Gln16 and I30-S36. The NMR distance constraints are consistent with the three disulfide bonds determined by mass spectroscopy (C4-C41, C13-C33, and C20-C26), where the first two could be directly determined from NOESY cross-peaks between CH beta protons of the corresponding cysteines. The second helix contains the (L/I)(29)IEECKTS(36) sequence conserved in attractins from five species of Aplysia that could interact with the receptor. The sequence and structure of this region are similar to those of the recognition helix of the Er-11 pheromone of the unicellular ciliate Euplotes raikovi, suggesting a possible common pathway for intercellular communication of these two distinct pheromone families.


Subject(s)
Aplysia/chemistry , Glycoproteins/chemistry , Pheromones/chemistry , Water/chemistry , Amino Acid Sequence , Animals , Glycoproteins/metabolism , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Pheromones/metabolism , Protein Folding , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Thermodynamics
4.
Biol Bull ; 205(1): 16-25, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12917218

ABSTRACT

Pheromones play a significant role in coordinating reproductive activity in many animals, including opisthobranch molluscs of the genus APLYSIA: Although solitary during most of the year, these simultaneous hermaphrodites gather into breeding aggregations during the reproductive season. The aggregations contain both mating and egg-laying animals and are associated with masses of egg cordons. The egg cordons are a source of pheromones that attract other Aplysia to the area, reduce their latency to mating, and induce egg laying. One of these water-borne egg cordon pheromones ("attractin") has been characterized and shown to be attractive in T-maze assays. Attractin is the first water-borne peptide pheromone characterized in invertebrates. In the current studies, behavioral assays were used to better characterize the attraction, and to examine whether attractin can induce mating. Although the two activities could be related (i.e., attraction occurring because animals were looking for a partner), this was not tested. T-maze assays showed that attractin works as part of a bouquet of odors: the peptide is attractive only when Aplysia brasiliana is part of the stimulus. The animal does not need to be a conspecific, perhaps explaining why multiple species may be associated with one aggregation. Native and recombinant attractin are equally attractive, verifying that N-glycosylation at residue 8 is not required for attraction. Mating studies showed that both native and recombinant attractin reduce the latency to mating. The effects are larger when hermaphroditic mating is considered: in addition to reducing latency, attractin doubles the number of pairs mating as hermaphrodites. The effect may result from attractin stimulating both animals to mate as males and would be consistent with behaviors previously seen in the T-maze. Attractin may thus be contributing to the formation of copulatory chains and rings seen in aggregations in the field. These results may be interpreted in two ways: (1). attractin has multiple activities that contribute to the establishment and maintenance of the aggregation; or (2). the induced desire to mate may make attractin attractive when it is presented in conjunction with an animal. In either case, the results open the door for cellular and molecular studies of mechanism of action.


Subject(s)
Aplysia/physiology , Glycoproteins/chemistry , Pheromones/chemistry , Sexual Behavior, Animal/physiology , Amino Acid Sequence , Animals , Disorders of Sex Development , Glycoproteins/physiology , Molecular Sequence Data , Pheromones/physiology , Reproduction/physiology , Texas
5.
J Chem Ecol ; 29(3): 547-60, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12757318

ABSTRACT

Male Loligo pealeii engage in frequent agonistic bouts to gain access to female mates while aggregated at communal egg beds. Male squids are attracted to eggs in the field and in the laboratory. It was recently demonstrated that visual detection followed by physical contact with egg capsules elicited male-male aggression. We tested specific physical and chemical features of the egg capsules that may cause this strong behavioral reaction. Male squids were presented with either natural or artificial egg stimuli and scored for four selected behaviors (egg touch, egg blowing, forward-lunge grab, and fin-beating), the last two of which are highly aggressive behaviors. First, squids were presented with natural eggs versus eggs sealed in agarose-coated tubes (ESACT), which eliminated both tactile and chemical stimuli. Second, males were presented with natural eggs versus eggs sealed in agarose coated tubes containing C18 Sep-Pak-purified extracts (TCPE) from squid egg capsules, which provided chemical cues from natural eggs without the physical stimulus of the egg capsules. Third, natural eggs versus heat-denatured eggs were tested to determine whether the active factor in natural eggs is heat-labile. Squids responded aggressively when contacting natural eggs and TCPE, whereas squids did not respond after touching ESACT or denatured eggs. These results suggest that aggressive behavior is elicited by a heat-labile factor that is embedded within squid egg capsules. This chemosensory cue appears to be a contact pheromone that stimulates the agonistic interactions that characterize the mating behavior of migratory squids on inshore spawning grounds.


Subject(s)
Agonistic Behavior/physiology , Decapodiformes/physiology , Ovum/physiology , Pheromones/physiology , Sexual Behavior, Animal/physiology , Animals , Cues , Female , Male , Pheromones/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...