Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Neurol (Paris) ; 179(9): 961-966, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37328356

ABSTRACT

INTRODUCTION: The identification of blood biomarkers appears to be a means of improving diagnosis accuracy in Parkinson's disease (PD) and atypical parkinsonian syndromes (APS). We, therefore, evaluate the performance of neurodegeneration, oxidative stress and lipid metabolism plasma biomarkers to distinguish PD from APS. METHODS: This was a monocentric study with a cross-sectional design. Plasma levels and discriminating power of neurofilament light chain (NFL), malondialdehyde (MDA) and 24S-Hydroxycholesterol (24S-HC) were assessed in patients with clinical diagnoses of PD or APS. RESULTS: In total, 32 PD cases and 15 APS cases were included. Mean disease durations were 4.75 years in PD group and 4.2 years in APS group. Plasma levels of NFL, MDA and 24S-HC differed significantly between the APS and PD groups (P=0.003; P=0.009; P=0.032, respectively). NFL, MDA and 24S-HC discriminated between PD and APS (AUC=0.76688; AUC=0.7375; AUC=0.6958, respectively). APS diagnosis significantly increased with MDA level≥23.628nmol/mL (OR: 8.67, P=0.001), NFL level≥47.2pg/mL (OR: 11.92, P<0.001) or 24S-HC level≤33.4pmol/mL (OR: 6.17, P=0.008). APS diagnosis considerably increased with the combination of NFL and MDA levels beyond cutoff values (OR: 30.67, P<0.001). Finally, the combination of NFL and 24S-HC levels, or MDA and 24S-HC levels, or all three biomarkers' levels beyond cutoff values systematically classified patients in the APS group. CONCLUSION: Our results suggest that 24S-HC and especially MDA and NFL could be helpful for differentiating PD from APS. Further studies will be needed to reproduce our findings on larger, prospective cohorts of patients with parkinsonism evolving for less than 3 years.


Subject(s)
Parkinson Disease , Parkinsonian Disorders , Humans , Parkinson Disease/diagnosis , Parkinson Disease/metabolism , Prospective Studies , Cross-Sectional Studies , Lipid Metabolism , Parkinsonian Disorders/diagnosis , Biomarkers , Oxidative Stress
2.
Ageing Res Rev ; 68: 101324, 2021 07.
Article in English | MEDLINE | ID: mdl-33774195

ABSTRACT

Age-related diseases for which there are no effective treatments include cardiovascular diseases; neurodegenerative diseases such as Alzheimer's disease; eye disorders such as cataract and age-related macular degeneration; and, more recently, Severe Acute Respiratory Syndrome (SARS-CoV-2). These diseases are associated with plasma and/or tissue increases in cholesterol derivatives mainly formed by auto-oxidation: 7-ketocholesterol, also known as 7-oxo-cholesterol, and 7ß-hydroxycholesterol. The formation of these oxysterols can be considered as a consequence of mitochondrial and peroxisomal dysfunction, leading to increased in oxidative stress, which is accentuated with age. 7-ketocholesterol and 7ß-hydroxycholesterol cause a specific form of cytotoxic activity defined as oxiapoptophagy, including oxidative stress and induction of death by apoptosis associated with autophagic criteria. Oxiaptophagy is associated with organelle dysfunction and in particular with mitochondrial and peroxisomal alterations involved in the induction of cell death and in the rupture of redox balance. As the criteria characterizing 7-ketocholesterol- and 7ß-hydroxycholesterol-induced cytotoxicity are often simultaneously observed in major age-related diseases (cardiovascular diseases, age-related macular degeneration, Alzheimer's disease) the involvement of these oxysterols in the pathophysiology of the latter seems increasingly likely. It is therefore important to better understand the signalling pathways associated with the toxicity of 7-ketocholesterol and 7ß-hydroxycholesterol in order to identify pharmacological targets, nutrients and synthetic molecules attenuating or inhibiting the cytotoxic activities of these oxysterols. Numerous natural cytoprotective compounds have been identified: vitamins, fatty acids, polyphenols, terpenes, vegetal pigments, antioxidants, mixtures of compounds (oils, plant extracts) and bacterial enzymes. However, few synthetic molecules are able to prevent 7-ketocholesterol- and/or 7ß-hydroxycholesterol-induced cytotoxicity: dimethyl fumarate, monomethyl fumarate, the tyrosine kinase inhibitor AG126, memantine, simvastatine, Trolox, dimethylsufoxide, mangafodipir and mitochondrial permeability transition pore (MPTP) inhibitors. The effectiveness of these compounds, several of which are already in use in humans, makes it possible to consider using them for the treatment of certain age-related diseases associated with increased plasma and/or tissue levels of 7-ketocholesterol and/or 7ß-hydroxycholesterol.


Subject(s)
COVID-19 , Aging , Humans , Hydroxycholesterols , Ketocholesterols , Nutrients , Oils , SARS-CoV-2
3.
Kidney Int ; 72(7): 871-8, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17667986

ABSTRACT

Apolipoprotein Cs (apoC-1, apoC-II, and apoC-III) are lipoprotein components that have regulatory effects on enzymes involved in lipoprotein metabolism. Owing to their low molecular weights, apoCs can adsorb onto and/or pass through dialysis membranes. Our study determines the consequence of hemodialysis (HD) on plasma concentrations of apoCs and on the activities of enzymes modulated by apoCs. Plasma samples were collected from 28 patients with chronic renal failure before and after HD. Plasma apoC-II levels were unchanged, whereas apoC-III levels were slightly decreased in post-dialysis plasmas. The apoC-I content was markedly reduced during HD. This was due to a significant decrease in the apoC-I content of very low-density lipoprotein (VLDL), whereas the apoC-I content of high-density lipoprotein (HDL) was unchanged. Although HDL bound apoC-I is thought to inhibit cholesterol ester transfer protein, no change in the ability of pre- and post-dialysis VLDL to interact with the transfer protein were observed. Complementary experiments confirmed that VLDL-bound apoC-I has no transfer protein inhibitory potential. In contrast, an increase in the ability of post-dialysis apoC-I-poor VLDL to act as substrate for lipoprotein lipase (LPL) was found compared to pre-dialysis VLDL. Our study shows that apoC-I losses during HD might be beneficial by improving the ability of VLDL to be a substrate for LPL thus improving plasma triglyceride metabolism.


Subject(s)
Apolipoprotein C-I/blood , Cholesterol Ester Transfer Proteins/blood , Cholesterol, VLDL/blood , Lipoprotein Lipase/blood , Renal Dialysis , Aged , Cholesterol, HDL/blood , Female , Humans , Kidney Failure, Chronic/blood , Kidney Failure, Chronic/therapy , Male , Middle Aged
4.
Cell Death Differ ; 11(8): 897-905, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15105836

ABSTRACT

7-Ketocholesterol is a component of oxidized LDL, which plays a central role in atherosclerosis. It is a potent inducer of cell death towards a wide number of cells involved in atherosclerosis. In this study, it is reported that 7-ketocholesterol treatment induces an increase of cytosolic-free Ca(2+) in THP-1 monocytic cells. This increase is correlated with the induction of cytotoxicity as suggested from experiments using the Ca(2+) channel blockers verapamil and nifedipine. This 7-ketocholesterol-induced apoptosis appears to be associated with the dephosphorylation of serine 75 and serine 99 of the proapoptotic protein Bcl-2 antagonist of cell death (BAD). We demonstrated that this dephosphorylation results mainly from the activation of calcium-dependent phosphatase calcineurin by the oxysterol-induced increase in Ca(2+). Moreover, this Ca(2+) increase appears related to the incorporation of 7-ketocholesterol into lipid raft domains of the plasma membrane, followed by the translocation of transient receptor potential calcium channel 1, a component of the store operated Ca(2+) entry channel, to rafts.


Subject(s)
Apoptosis/physiology , Calcium Channels/metabolism , Calcium/metabolism , Carrier Proteins/metabolism , Ketocholesterols/pharmacology , Apoptosis/drug effects , Calcineurin/metabolism , Calcium Channel Blockers/pharmacology , Cell Membrane/metabolism , Cells, Cultured , Genes, bcl-2/physiology , Humans , Membrane Microdomains/metabolism , Monocytes/metabolism , Nifedipine/pharmacology , Phosphorylation , Serine/metabolism , TRPC Cation Channels , Verapamil/pharmacology , bcl-Associated Death Protein
5.
Fungal Genet Biol ; 22(2): 103-11, 1997 Oct.
Article in English | MEDLINE | ID: mdl-9367657

ABSTRACT

Glomales (Zygomycetes) are obligate fungal symbionts of roots of land plants and form arbuscular mycorrhiza. Sporal DNA of 10 isolates belonging to nine species was purified and the base composition was determined by RP-HPLC. Base composition fell in a narrow range between 30 and 35% G + C. A high amount of methylated cytosine (mC) accounting for 2-4% of the total nucleotides was found in all taxa. The DNA melting profile was defined for Scutellospora castanea. It corresponded to 32% G + C, and the shape of the denaturation curve suggested a heterogeneity in the GC content within the fungal genome. Knowledge of GC contents and variations between taxa are essential for evaluating nuclear DNA content using fluorimetric methods, and high proportions of mC/C + mC in the genomes of glomalean fungi could reflect the existence of repeated DNA families. Results are discussed in relation to data for other fungi and eukaryotes.


Subject(s)
Cytosine/analogs & derivatives , DNA Methylation , DNA, Fungal/chemistry , Fungi/chemistry , 5-Methylcytosine , Base Composition , Chromatography, High Pressure Liquid , Cytosine/analysis , Hot Temperature , Nucleic Acid Denaturation , Spores, Fungal/chemistry
6.
Gene ; 205(1-2): 109-18, 1997 Dec 31.
Article in English | MEDLINE | ID: mdl-9461384

ABSTRACT

We have analysed the levels of 5-methylcytosine (5mC) in DNAs from 42 vertebrates, and compiled, including data from literature, a table of genomic 5mC and GC levels (as well as the available c-values, i.e., the haploid genome sizes) of 87 species from all vertebrate classes. An analysis of the data indicates that (i) two positive correlations hold between the 5mC and GC levels of the genomes of fishes/amphibians and mammals/birds, respectively; (ii) the genomes of fishes and amphibians are, on average, about twice as methylated as those of mammals, birds and reptiles, this difference being unrelated to the amounts of repetitive DNA sequences; (iii) the 5mC and CpG observed/expected values show no overlap between the two groups of vertebrates and suggest the existence of two equilibria. The transition separating the two equilibria appears to have taken place at the time of appearance of reptiles. Its possible cause(s) and its implications are discussed.


Subject(s)
CpG Islands/genetics , DNA Methylation , Evolution, Molecular , Genome , Vertebrates/genetics , Animals , DNA/genetics , Humans , Repetitive Sequences, Nucleic Acid , Species Specificity
7.
Nucleic Acids Res ; 24(8): 1489-96, 1996 Apr 15.
Article in English | MEDLINE | ID: mdl-8628682

ABSTRACT

The nucleotide analysis of a cytoplasmic tRNA(Leu) isolated from bovine liver revealed the presence of an unknown modified nucleotide N. The corresponding N nucleoside was isolated by different enzymatic and chromatographic protocols from a partially purified preparation of this tRNA(Leu). Its chemical characterization was determined from its chromatographic properties, UV-absorption spectroscopy and mass spectrometric measurements, as well as from those of the borohydride reduced N nucleoside and its etheno-trimethylsilyl derivative. The structure of N was established as 2'-O-methyl-5-formylcytidine (f5CM), and its reduced derivative as 2'-O-methyl-5-hydroxy-methylcytidine (om5Cm). By sequencing the bovine liver tRNA(Leu), the structure of the anticodon was determined as f5CmAA. In addition, the nucleotide sequence showed two primary structures differing only by the nucleotide 47c which is either uridine or adenosine. The two slightly differing bovine liver tRNAs-Leu(f5CmAA) are the only tRNAs so far sequenced which contain f5Cm. The role of such a modified cytidine at the first position of the anticodon is discussed in terms of decoding properties for the UUG and UUA leucine codons. Recently, precise evidence was obtained for the presence of f5Cm at the same position in tRNAs(Leu)(NAA) isolated from rabbit and lamb liver. Therefore, the 2'-O-methyl-5-formyl modification of cytidine at position 34 could be a general feature of cytoplasmic tRNAs(Leu)(NAA) in mammals.


Subject(s)
Cytidine/analogs & derivatives , Liver/chemistry , RNA, Transfer, Amino Acyl/chemistry , Animals , Base Sequence , Borohydrides/chemistry , Cattle , Cytidine/chemistry , Cytidine/isolation & purification , Cytoplasm , Gas Chromatography-Mass Spectrometry , HeLa Cells , Humans , Molecular Sequence Data , Molecular Structure , Nucleic Acid Conformation , RNA, Transfer, Amino Acyl/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...