Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38931086

ABSTRACT

Discussing homology relationships among secretory structures remains a relatively underexplored area in botanical research. These structures are widely dispersed within Malpighiales, one of the largest orders of eudicots. Within Malpighiales, both extranuptial and nuptial nectaries are present, and they do not seem homoplastic or share evolutionary connections. Particularly in Malpighiaceae, extensive research has focused on the ecological interactions mediated by glands. Botanists largely agree that elaiophores in sepals of Neotropical Malpighiaceae have evolved from extrafloral nectaries on leaves. However, the evolutionary origin of elaiophores has yet to be thoroughly examined, particularly in comparison to outgroups. This study provides empirical evidence on the ontogeny of elaiophores and investigates their evolutionary origins and homology relationships across different lineages of Malpighiales using comparative anatomy. Our findings suggest that elaiophores are likely homologous to extranuptial nectaries found in sepals of other Malpighiales lineages, originating from nectaries on leaves. This discussion is a starting point for future studies exploring the evolution of nectaries found in flowers, whether extranuptial or nuptial, and their potential origins from nectaries in vegetative organs such as leaves. Understanding these relationships could shed light on the selective pressures influencing floral morphologies.

2.
Plants (Basel) ; 12(22)2023 Nov 18.
Article in English | MEDLINE | ID: mdl-38005789

ABSTRACT

Tomato fruit is an excellent model for evaluating calcium regulation in plants since it expresses symptoms of either calcium deficiency or calcium excess. Aiming to evaluate the structure of the vascular system and its interactions with calcium and calcium oxalate crystals (CaOx), fruits of Lycopersicon pimpinellifolium were studied. Calcium levels were evaluated in basal, median, and distal pericarp portions, which were also analyzed under a light microscope to describe the structure. The L. pimpinellifolium pericarp shows idioblasts with calcium oxalate crystals. Vascular bundles of the basal pericarp show large transverse sections and abundant xylem vessels. The vascular bundles were smaller in the distal pericarp, and the xylem showed fewer and narrower vessels. The terminal bundles often consisted exclusively of phloem. Despite the differences observed in vascular bundle composition, the density of the vascular system was uniform in the pericarp as a consequence of bundle ramifications that occur at distal portions. The calcium concentration and crystal idioblasts decrease towards the apex of the fruit. The reduction in the xylem:phloem ratio seems to determine the low calcium concentration in the distal fruit portion.

3.
Plants (Basel) ; 12(16)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37631124

ABSTRACT

Araceae comprises a diverse group of plants that grow in various habitats, ranging from submerged aquatics to lithophytes. Thus, aroids are likely to show diverse glands acting in several plant-environment interactions, including colleters that protect young shoots. Based on this premise and the lack of studies regarding secretory structures in Araceae, we employed standard light and electron microscopy methods to test the hypothesis that colleters are present in Anthurium. Our main goals were to identify mucilage glands in A. andraeanum by conducting a detailed anatomical study of their structure, ultrastructure, and secretory activity. We found finger-like colleters in the apex of young leaves, spathes, and unexpanded cataphylls as well as secreting zones at the apex of expanded cataphylls, at the margins of non-fused cataphylls, and throughout the keels in two-keeled cataphylls. The colleters develop precociously and senesce shortly afterwards. Ultrastructural data and histochemistry confirmed the production of a polysaccharide-rich secretion that fills the spaces within the developing shoot. As far we know, this is the first time that colleters have been reported for Araceae. The functional roles of the secretion and the position of finger-like colleters concerning the 'precursor tip' of monocotyledons are discussed. Future research correlating secretory activity in colleters of species from different habitats might reveal a great diversity of mucilage glands with ecological and evolutionary significance to the family.

4.
Protoplasma ; 260(3): 935-947, 2023 May.
Article in English | MEDLINE | ID: mdl-36445484

ABSTRACT

Mabea fistulifera, a species pollinated mainly by diurnal and nocturnal vertebrates, presents pendulous inflorescences with approximately 70 pairs of nuptial nectaries (NNs). These NNs exude voluminous nectar drops that defy gravity, remaining exposed at the inflorescence for more than a day. We aimed to investigate the NN secretory process and the unique nectar presentation of M. fistulifera. NNs and their exudate were collected at different secretory stages and submitted to structural studies and chemical analysis. The epidermis is devoid of stomata and constitutes the main site of synthesis for non-sugar metabolites found on nectar and nectar-coating film. Nectary parenchyma presents few small starch grains, and vascular strands are distributed until the nectary parenchyma cells close to the epidermis. Vascular tissues at the nectary parenchyma seem to provide sugar and water for the nectar. A film composed of lipids, alkaloids, and proteins covers the nectar drops. The film guarantees the nectar offering for several hours, as it minimizes water loss and prevents falls by gravitational action. The release of large nectar drops is intrinsically linked to the NN anatomical traits and the exudate composition. Low sugar concentration and predominance of hexoses in M. fistulifera nectar are essential for maintaining nectar exudation for many hours, which results in the visitation of a broad spectrum of pollinators.


Subject(s)
Euphorbiaceae , Plant Nectar , Animals , Plant Nectar/chemistry , Flowers/chemistry , Euphorbiaceae/metabolism , Secretory Pathway , Carbohydrates
5.
Naturwissenschaften ; 108(3): 24, 2021 May 27.
Article in English | MEDLINE | ID: mdl-34043088

ABSTRACT

Calcium oxalate (CaOx) crystals have challenged human curiosity since the advent of microscopy. These crystals are linked to the control of calcium levels in plant cells, but they have also been attributed several other functions, including protection against herbivory. However, the protection offered by CaOx crystals against herbivory may be overstated, as claims have been mainly based on their shapes and hard and indigestible nature rather than on experimental evidence. I contend that it is improbable that a constitutive defense, present since very early in the evolution of plants, has not been superseded by herbivores, especially insects. Here, I present arguments and evidence that suggest that these crystals have low efficiency in protecting plants against herbivores. First, I argue that insects with chewing mouthparts possess a semipermeable structure that protects their midgut, minimizing damage from crystals. Second, the action of CaOx crystals is purely mechanical and similar to other inert materials such as sand. Therefore, CaOx crystals only provide effective protection from herbivory in very particular cases and should not be considered an effective defense without supporting experimental evidence.


Subject(s)
Calcium Oxalate/chemistry , Herbivory , Insecta/metabolism , Plants/chemistry , Animals , Plants/parasitology
6.
Am J Bot ; 108(1): 37-50, 2021 01.
Article in English | MEDLINE | ID: mdl-33449391

ABSTRACT

PREMISE: Floral rewards are essential in understanding floral function and evolution of the relationships between flowers and pollinators. Whether sugars are present in stigmatic exudates in Anthurium and whether it has floral nectaries have remained controversial because of the scarcity of structural studies. To solve these questions, we investigated the floral anatomy of A. andraeanum to elucidate whether (1) tepals are secretory organs, (2) tepals possess a structurally recognizable nectary, and (3) tepalar secretion differs from stigmatic secretion. METHODS: Floral structure was assessed through light and electron microscopy of samples of immature, pistillate, and staminate flowers. The dynamics of the starch reserve was investigated using histochemical tests, and the sugar content in the floral exudates was assessed using thin-layer chromatography. RESULTS: Sugar analysis did not detect sucrose, glucose, or fructose in stigmatic secretions, but confirmed their presence in tepalar secretions. Stigmatic secretion was produced by secretory stigmatic papillae; tepalar exudates were produced by nonvascularized nectaries in the apex of tepals. These nectaries were characterized by modified stomata and cells with cytoplasm rich in organelles, and a high content of calcium oxalate crystals. CONCLUSIONS: Our results showed for the first time nectaries on tepals and true nectar secretion for A. andraeanum. Stigmatic secretion appears to be a distinct substance, and its often-reported sugar content seems to be a result of sample contamination. Nectar and stigmatic secretions have been often mistaken in other Anthurium species and deserve a revision for this genus.


Subject(s)
Flowers , Plant Nectar , Bodily Secretions , Carbohydrates , Organelles
7.
Front Plant Sci ; 11: 627, 2020.
Article in English | MEDLINE | ID: mdl-32508868

ABSTRACT

The specialised mutualism between Tococa guianensis and ants housed in its leaf domatia is a well-known example of myrmecophily. A pollination study on this species revealed that flowers in the bud stage exude a sugary solution that is collected by ants. Given the presence of this unexpected nectar secretion, we investigated how, where, and when floral buds of T. guianensis secret nectar and what function it serves. We studied a population of T. guianensis occurring in a swampy area in the Cerrado of Brazil by analyzing the chemical composition and secretion dynamics of the floral-bud nectar and the distribution and ultrastructure of secretory tissues. We also measured flower damage using ant-exclusion experiments. Floral bud nectar was secreted at the tip of the petals, which lack a typical glandular structure but possess distinctive mesophyll due to the presence of numerous calcium oxalate crystals. The nectar, the production of which ceased after flower opening, was composed mainly of sucrose and low amounts of glucose and fructose. Nectar was consumed by generalist ants and sporadically by stingless bees. Ant exclusion experiments resulted in significantly increased flower damage. The floral nectar of T. guianensis is produced during the bud stage. This bud-nectar has the extranuptial function of attracting generalist ants that reduce florivory. Pollen is the unique floral resource attracting pollinators during anthesis. Tococa guianensis, thus, establishes relationships with two functional groups of ant species: specialist ants acting against herbivory and generalist ants acting against florivory.

8.
New Phytol ; 223(4): 1707-1711, 2019 09.
Article in English | MEDLINE | ID: mdl-31081933

ABSTRACT

Calcium oxalate (CaOx) crystals occur as intravacuolar deposits in most angiosperm species. Different functions have been attributed to these crystals, some of which are very speculative, until now. Calcium regulation and homeostasis seem to be the most widespread function of CaOx crystals. Being rich in calcium, these crystals constitute a reserve of calcium for plants. However, despite being bioavailable, this reserve is functional in just a few situations due to the low mobility of calcium for phloem translocation. Therefore, CaOx crystals as a calcium reserve is a paradox because in most cases the reserve cannot be used. However, in most plants, these crystals occur in organs or tissues that will be discarded, which allows the elimination of excess calcium. This suggests that CaOx crystals have a functional role in excess calcium excretion. There is some evidence that, for calcium, this excretory function is relevant for plants since they lack an excretory system dedicated to discarding solid wastes, such as calcium salts.


Subject(s)
Calcium Oxalate/metabolism , Calcium/metabolism , Plants/metabolism , Biological Transport , Crystallization
9.
Protoplasma ; 256(4): 971-981, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30796515

ABSTRACT

Caryocar brasiliense is a flagship species of the Brazilian Cerrado. It produces flowers with a strong peculiar scent, which are pollinated by bats and occasionally moths with short mouthparts. However, the cues responsible for attracting these nocturnal pollinators remain unknown. We aimed to identify osmophores of C. brasiliense, describe the ultrastructure of the cells involved in the synthesis and release of floral odour, and identify the constituents of the floral bouquet. We performed field observations and histochemical and ultrastructural analyses of flowers focusing on the androecium. Gas chromatography-mass spectrometry was used to analyse the scents emitted. Filament epidermal cells were found to possess an unusual shape and be responsible for the main production and release of odour. These cells, called foraminous cells, are elongate and possess pores where their cell walls are abruptly thin. The cuticle is practically absent over the pores, which facilitates odour emission. The foraminous cells have conspicuous nuclei and organelle-rich cytoplasm where oil droplets can be seen prior to anthesis. The features of these cells remain similar during anthesis, but many vesicles fuse with the plasma membrane and the number of oil droplets in the cytosol decreases. Twenty-nine components were found in the scent, especially fatty acid derivatives and N- and S-bearing compounds. Our analyses revealed that the androecium of C. brasiliense has a particular structure that acts as an osmophore. The scent from the androecium resembles that of the entire flower, which is an unprecedented finding for a plant with single flowers as the pollination unit.


Subject(s)
Ericales/ultrastructure , Flowers/ultrastructure , Odorants/analysis , Volatile Organic Compounds/analysis , Ericales/physiology , Flowers/chemistry , Flowers/cytology , Flowers/physiology , Gas Chromatography-Mass Spectrometry , Humans , Plant Cells/physiology , Plant Cells/ultrastructure , Pollination , Volatile Organic Compounds/chemistry
10.
Ecotoxicol Environ Saf ; 144: 307-314, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28645032

ABSTRACT

Tropical woody species occurring in limestone outcrops are frequently exposed to particulate material from cement factories. The effects of 60-day cement dust exposure on physiological traits and enzymatic antioxidant system of young plant leaves of Guazuma ulmifolia Lam., Myracrodruon urundeuva Allemão and Trichilia hirta L. were investigated. Cement dust (2.5 or 5mgcm-2) was applied to the leaf surface or soil or both (leaf plus soil) and plants were maintained at greenhouse. Cement dust barely affected the mineral nutrient levels, except for iron whose content was decreased in leaves/leaflets of all species studied. The incident light was partly blocked in cement dust-treated leaves, regardless of the plant species, causing a decrease in the photosynthetic pigments in M. urundeuva. The chlorophyll b content, however, increased in G. ulmifolia and T. hirta leaves upon cement dust treatment. The potential quantum yield of photosystem II in challenged leaves of G. ulmifolia was 3.8% lower than that of control plants, while such trait remained unaffected in the leaves of the other species. No changes in leaf stomatal conductance and antioxidant enzymes activities were observed, except for M. urundeuva, which experienced a 31% increment in the superoxide dismutase activity upon 5mgcm-2 cement dust (leaf plus soil treatment), when compared with control plants. Overall, the mild changes caused by cement dust in the in physiological and biochemical traits of the species studied indicate that such species might be eligible for further studies of revegetation in fields impacted by cement factories.


Subject(s)
Air Pollutants/toxicity , Antioxidants/metabolism , Construction Materials/toxicity , Dust/analysis , Magnoliopsida/physiology , Plant Leaves/metabolism , Air Pollutants/analysis , Construction Materials/analysis , Iron/metabolism , Photosynthesis/drug effects , Photosystem II Protein Complex/metabolism , Plant Leaves/drug effects , Soil/chemistry , Species Specificity , Tropical Climate
11.
Ann Bot ; 119(4): 533-543, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28065928

ABSTRACT

Background and Aims: Araceae species pollinated by nocturnal Cyclocephalini beetles attract their pollinators by inflorescence scents. In Philodendron , despite the intense odour, the osmophores exhibit no definite morphological identity, making them difficult to locate. This may explain why structural studies of the scent-releasing tissue are not available so far. Methods: Several approaches were employed for locating and understanding the osmophores of Philodendron adamantinum . A sensory test allowed other analyses to be restricted to fertile and sterile stamens as odour production sites. Stamens were studied under light and electron microscopy. Dynamic headspace and gas chromatography-mass spectrometry were used to collect and analyse scents from different zones of the inflorescence. Key Results: The epidermal cells of the distal portion of fertile stamens and staminodes are papillose and, similar to the parenchyma cells of this region, have dense cytoplasm and large nuclei. In these cells, the composition of organelles is compatible with secretory activity, especially the great number of mitochondria and plastids. In this portion, lipid droplets that are consumed concomitantly with the release of odour were observed. Quantitative scent analyses revealed that the scent, with a predominance of dihydro-ß-ionone, is mainly emitted by the fertile and sterile staminate zones of the spadix. An amorphous substance in the stomata pores indicates that the components are secreted and volatilized outside of the osmophore under thermogenic heat. Conclusions: Despite the difficulty in locating osmophores in the absence of morphological identity and inefficiency of neutral red staining, the osmophores of P. adamantinum have some features expected for these structures. The results indicate a functional link between thermogenesis and volatilization of osmophore secretions to produce olfactory signals for attracting specialized beetle pollinators. These first experimental data about the precise location of osmophores in Philodendron will stimulate studies in related species that will allow future comparison and the establishment of patterns of functional morphology.


Subject(s)
Philodendron/anatomy & histology , Pollination , Animals , Coleoptera , Flowers/anatomy & histology , Flowers/metabolism , Flowers/physiology , Flowers/ultrastructure , Gas Chromatography-Mass Spectrometry , Microscopy, Electron , Philodendron/physiology , Pollination/physiology , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism
12.
Chemosphere ; 158: 56-65, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27243585

ABSTRACT

Considering the impacts caused to vegetation in the vicinity of cement factories, the aim of this study was to evaluate the impacts of cement dust on the structural organization and physiological/biochemical traits of Cedrela fissilis leaflets, a woody species native to tropical America. Plants were exposed to 2.5 or 5 mg cm-2 cement dust applied to the leaf surface, to the soil or simultaneously to the leaf surface and the soil.. Leaves of shoot-treated plants exhibited chlorosis, marginal and inter veins necrosis, diminished thickness, epidermal cells less turgid, cellular collapse, obstructed stomata, senescence, rolling and some abscission. In few cases, individual death was recorded. Cement dust-treated plants also presented decreased amount of photosynthetic pigments and iron (Fe) and increase in calcium (Ca) levels. The cement crust formed in leaves surface blocked from 30 to 50% of the incoming light and reduced the stomatal conductance and the potential quantum yield of photosystem II. Control or soil-treated plants did not exhibit morphophysiological changes throughout the experiment. The activity of superoxide dismutase, catalase and ascorbate peroxidase increased in leaves of plants upon treatment with 2.5 mg cm(-2) cement dust, independent of the site application. Overall, these results indicate that C. fissilis is highly sensitive to cement dust at the initial stage of development.


Subject(s)
Cedrela/drug effects , Construction Materials , Environmental Pollutants/analysis , Plant Leaves/drug effects , Antioxidants/chemistry , Ascorbate Peroxidases/chemistry , Catalase/chemistry , Dust , Hydrogen-Ion Concentration , Iron/chemistry , Light , Microscopy, Electron , Photosynthesis , Photosystem II Protein Complex , Plant Leaves/physiology , Soil/chemistry , Superoxide Dismutase/chemistry
13.
Environ Sci Pollut Res Int ; 23(16): 16104-14, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27146683

ABSTRACT

Cement industries located nearby limestone outcrops in Brazil have contributed to the coating of cement dust over native plant species. However, little is known about the extent of the response of tropical woody plants to such environmental pollutant particularly during the first stages of plant development and establishment. This work focused on the investigation of possible alterations in leaf structural and ultrastructural traits of 5-month-old Guazuma ulmifolia Lam. (Malvaceae), 6-month-old Myracrodruon urundeuva Allemão (Anacardiaceae), and 9-month-old Trichilia hirta L. (Meliaceae) challenged superficially with cement dust during new leaf development. Leaf surface of plants, the soil or both (leaf plus soil), were treated (or not) for 60 days, under controlled conditions, with cement dust at 2.5 or 5.0 mg cm(-2). After exposure, no significant structural changes were observed in plant leaves. Also, no plant death was recorded by the end of the experiment. There was also some evidence of localized leaf necrosis in G. ulmifolia and T. hirta, leaf curling in M. urundeuva and T. hirta, and bulges formation on epidermal surface of T. hirta, after cement dust contact with plant shoots. All species studied exhibited stomata obliteration while T. hirta, in particular, presented early leaf abscission, changes in cellular relief, and organization and content of midrib cells. No significant ultrastructural alterations were detected under the experimental conditions studied. Indeed, mesophyll cells presented plastids with intact membrane systems. The high plant survival rates, together with mild morphoanatomic traits alterations in leaves, indicate that G. ulmifolia is more resistant to cement dust pollutant, followed by M. urundeuva and T. hirta. Thus, the three plant species are promising for being used to revegetate areas impacted by cement industries activities.


Subject(s)
Anacardiaceae/drug effects , Dust , Environmental Pollutants/toxicity , Malvaceae/drug effects , Meliaceae/drug effects , Plant Leaves/drug effects , Anacardiaceae/anatomy & histology , Anacardiaceae/ultrastructure , Brazil , Malvaceae/anatomy & histology , Malvaceae/ultrastructure , Meliaceae/anatomy & histology , Meliaceae/ultrastructure , Plant Leaves/anatomy & histology , Plant Leaves/ultrastructure , Tropical Climate
14.
Ann Bot ; 117(4): 533-40, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26929201

ABSTRACT

BACKGROUND: In plants, the products of secretory activity leave the protoplast and cross the plasma membrane by means of transporters, fusion with membranous vesicles or, less commonly, as result of disintegration of the cell. These mechanisms do not address an intriguing question: How do secretory products cross the cell wall? Furthermore, how do these substances reach the external surface of the plant body? Such diverse substances as oils, polysaccharides or nectar are forced to cross the cell wall and, in fact, do so. How are chemical materials that are repelled by the cell wall or that are sufficiently viscous to not cross passively released from plant cells? SCOPE AND CONCLUSIONS: I propose a cell-cycle model developed based on observations of different secreting systems, some unpublished results and an extensive literature review, aiming to understand the processes involved in both the secretory process and the release of secretion products. In the absence of facilitated diffusion, a mechanical action of the protoplast is necessary to ensure that some substances can cross the cell wall. The mechanical action of the protoplast, in the form of successive cycles of contraction and expansion, causes the material accumulated in the periplasmic space to cross the cell wall and the cuticle. This action is particularly relevant for the release of lipids, resins and highly viscous hydrophilic secretions. The proposed cell-cycle model and the statements regarding exudate release will also apply to secretory glands not elaborated upon here. Continuous secretion of several days, as observed in extrafloral nectaries, salt glands and some mucilage-producing glands, is only possible because the process is cyclical.


Subject(s)
Cell Wall/metabolism , Models, Biological , Plant Cells/metabolism , Protoplasts/metabolism , Secretory Pathway , Biomechanical Phenomena
15.
C R Biol ; 336(8): 400-6, 2013 Aug.
Article in English | MEDLINE | ID: mdl-24018197

ABSTRACT

The colleter secretion can be useful to protect plants of Cerrado (Brazilian savanna) biome during the long and pronounced dry season. This study describes the presence of colleters in Tontelea micrantha and represents the first record of these structures in Celastraceae. To investigate colleter structure and their secretory processes, young leaves were collected, fixed, and processed according to conventional techniques for light, and electron microscopy. Colleters were observed at the marginal teeth on the leaf. They produce mucilaginous secretions that spread over the leaf surface. After secretory phase, colleters abscise. The secretory epithelium is uniseriate and composed of elongated cells whose dense cytoplasm is rich in organelles. The ultrastructure of the secretory cells is compatible with the pectin-rich secretion. Observations of the young leaves surface revealed the presence of superficial hydrophilic secretion films that appeared to have the function of maintaining the water status of those organs.


Subject(s)
Celastraceae/anatomy & histology , Pectins/metabolism , Plant Leaves/ultrastructure , Plant Mucilage/metabolism , Plant Transpiration/physiology , Brazil , Celastraceae/physiology , Desiccation , Ecology , Humidity , Hydrophobic and Hydrophilic Interactions , Microscopy, Electron , Organelles/ultrastructure , Plant Leaves/physiology , Seasons , Stress, Physiological , Surface Properties , Temperature , Water
16.
Rev Biol Trop ; 60(1): 505-13, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22458243

ABSTRACT

Connarus suberosus is a typical species of the Brazilian Cerrado biome, and its inflorescences and young vegetative branches are densely covered by dendritic trichomes. The objective of this study was to report the occurrence of a previously undescribed glandular trichome of this species. The localization, origin and structure of these trichomes were investigated under light, transmission and scanning electron microscopy. Collections were made throughout the year, from five adult specimens of Connarus suberosus near Botucatu, São Paulo, Brazil, including vegetative and reproductive apices, leaves and fruits in different developmental stages, as well as floral buds and flowers at anthesis. Glandular trichomes (GTs) occurred on vegetative and reproductive organs during their juvenile stages. The GTs consisted of a uniseriate, multicellular peduncle, whose cells contain phenolic compounds, as well as a multicellular glandular portion that accumulates lipids. The glandular cell has thin wall, dense cytoplasm (with many mitochondria, plastids and dictyosomes), and a large nucleus with a visible nucleolus. The starch present in the plastids was hydrolyzed during the synthesis phase, reducing the density of the plastid stroma. Some plastids were fused to vacuoles, and some evidence suggested the conversion of plastids into vacuoles. During the final activity stages of the GTs, a darkening of the protoplasm was observed in some of the glandular cells, as a programmed cell death; afterwards, became caducous. The GTs in C. suberosus had a temporal restriction, being limited to the juvenile phase of the organs. Their presence on the exposed surfaces of developing organs and the chemical nature of the reserve products, suggest that these structures are food bodies. Field observations and detailed studies of plant-environment interactions, as well as chemical analysis of the reserve compounds, are still necessary to confirm the role of these GTs as feeding rewards.


Subject(s)
Connaraceae/ultrastructure , Brazil , Connaraceae/chemistry , Connaraceae/classification , Microscopy, Electron
17.
Methods Mol Biol ; 689: 37-49, 2011.
Article in English | MEDLINE | ID: mdl-21153785

ABSTRACT

It is often necessary to process large plant samples for light microscopy studies, but due to structural characteristics of plant tissues, especially intercellular spaces, large vacuoles, and phenolic substances, results are often unsatisfactory. When large samples are embedded in glycol methacrylate (GMA), their core may not polymerize, remaining soft and moist and making it difficult to cut microtome sections. This situation has been erroneously interpreted as the result of poor infiltration, when the soft core of these samples is actually the result of incomplete polymerization. While GMA is in fact present inside samples, unsatisfactory polymerization results from rapid external polymerization that does not allow sufficient hardener to reach the sample core, while the relatively large volume of GMA inside the tissue block also dilutes the hardener. In this chapter we propose a new method for processing large plant specimens that avoids these problems by: (1) slowing the polymerization process through cooling in order to permit the penetration of hardener into the sample core and (2) increasing the hardener:GMA ratio to aid polymerization of the sample core.


Subject(s)
Methacrylates/chemistry , Polymerization , Rhizome/anatomy & histology , Tissue Embedding/methods , Zingiber officinale/anatomy & histology , Desiccation/methods , Microtomy/methods , Tissue Fixation/methods
18.
C R Biol ; 332(12): 1078-84, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19931845

ABSTRACT

Reports concerning colleters in Fabaceae have been scarce, mainly in the Caesalpinioideae subfamily. The present work reports the occurrence, structure, and functional aspects of the colleters of Copaifera langsdorffii. Shoot apices and developing leaves were fixed and processed for examination by light and electron microscopy. Secretion samples were studied to determine their chemical nature and physical properties. The colleters are clavate and occur on the adaxial face of the stipules, petiole and rachis. The secretory stage of the colleters occurs during the leaf expansion, after which these structures turn brown and senesce. The secretion is composed of highly hygroscopic acidic polysaccharides and lipids. The colleters are composed of cells with thin walls, large nuclei, and dense cytoplasm with dictyosomes, mitochondria, plastids and the endoplasmic reticulum. Analyses of the secretion, placement, and functional aspects of the colleters present in C. langsdorffii indicate that these structures help protect young leaves from desiccation.


Subject(s)
Fabaceae/growth & development , Coloring Agents , Endoplasmic Reticulum/chemistry , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , Fabaceae/anatomy & histology , Fabaceae/ultrastructure , Lipids/chemistry , Microscopy, Electron, Scanning , Plant Leaves/chemistry , Plant Leaves/growth & development , Plant Leaves/ultrastructure , Plant Shoots/anatomy & histology , Plant Shoots/growth & development , Plant Shoots/ultrastructure , Polysaccharides/chemistry , Tissue Fixation , Vacuoles/chemistry , Vacuoles/metabolism , Vacuoles/ultrastructure
19.
Ann Bot ; 104(5): 937-44, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19617593

ABSTRACT

BACKGROUND AND AIMS: The occurrence of nectaries in fruits is restricted to a minority of plant families and consistent reports of their occurrence are not found associated with Fabaceae, mainly showing cellular details. The present study aims to describe the anatomical organization and ultrastructure of the pericarpial nectaries (PNs) in Erythrina speciosa, a bird-pollinated species, discussing functional aspects of these unusual structures. METHODS: Samples of floral buds, ovaries of flowers at anthesis and fruits at several developmental stages were fixed and processed by the usual methods for studies using light, and scanning and transmission electron microscopy. Nectar samples collected by filter paper wicks were subjected to chemical analysis using thin-layer chromatography. KEY RESULTS: The PNs are distributed in isolation on the exocarp. Each PN is represented by a single hyaline trichome that consists of a basal cell at epidermal level, stalk cell(s) and a small secretory multicellular head. The apical stalk cell shows inner periclinal and anticlinal walls impregnated by lipids and lignin and has dense cytoplasm with a prevalence of mitochondria and endoplasmic reticulum. The secretory cells show voluminous nuclei and dense cytoplasm, which predominantly has dictyosomes, rough endoplasmic reticulum, plastids, mitochondria and free ribosomes. At the secretory stage the periplasmic space is prominent and contains secretion residues. Tests for sugar indicate the presence of non-reducing sugars in the secretory cells. Nectar samples from PNs contained sucrose, glucose and fructose. CONCLUSIONS: The secretory stage of these PNs extends until fruit maturation and evidence suggests that the energetic source of nectar production is based on pericarp photosynthesis. Patrolling ants were seen foraging on fruits during all stages of fruit development, which suggests that the PNs mediate a symbiotic relationship between ants and plant, similar to the common role of many extrafloral nectaries.


Subject(s)
Erythrina/ultrastructure , Flowers/ultrastructure , Animals , Erythrina/physiology , Flowers/physiology , Fruit/growth & development , Fruit/ultrastructure , Insecta/physiology , Microscopy, Electron, Transmission , Pollination/physiology
20.
Ann Bot ; 103(3): 517-24, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19049986

ABSTRACT

BACKGROUND AND AIMS: The distinction between pearl bodies (or pearl glands) and food bodies (FBs) is not clear; neither is our understanding of what these structures really represent. The present work examined the ontogenesis, structure, ultrastructure and histochemical aspects of the protuberances in Cissus verticillata, which have been described since the beginning of the 19th century as pearl glands or pearl bodies, in order to establish a relationship between their structure and function. METHODS: Segments of stems and leaves in different stages of development were collected and fixed for study under light microscopy as well as electron transmission and scanning microscopy. Samples of FBs were subjected to chemical analysis using thin-layer chromatography. KEY RESULTS: The FBs in C. verticillata are globose and attached to the plant by a short peduncle. These structures are present along the entire stem during primary growth, and on the inflorescence axis and the abaxial face of the leaves. The FBs were observed to be of mixed origin, with the participation of both the epidermis and the underlying parenchymatic cells. The epidermis is uniseriate with a thin cuticle, and the cells have dense cytoplasm and a large nucleus. The internal parenchymatic cells have thin walls; in the young structures these cells have dense cytoplasm with a predominance of mitochondria and plastids. In the mature FBs, the parenchymatic cells accumulate oils and soluble sugars; dictyosomes and rough endoplasmic reticulum predominate in the cytoplasm; the vacuoles are ample. Removal of the FBs appears to stimulate the formation of new ones, at the same place. CONCLUSIONS: The vegetative vigour of the plant seems to influence the number of FBs produced, with more vigorous branches having greater densities of FBs. The results allow the conclusion that the structures traditionally designated pearl glands or pearl bodies in C. verticillata constitute FBs that can recruit large numbers of ants.


Subject(s)
Cissus/anatomy & histology , Cissus/metabolism , Plant Epidermis/cytology , Plant Epidermis/metabolism , Animals , Ants/physiology , Cissus/cytology , Cissus/ultrastructure , Plant Epidermis/parasitology , Plant Epidermis/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...