Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
CNS Neurosci Ther ; 23(2): 127-134, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27770487

ABSTRACT

AIMS: Medial ganglionic eminence (MGE) progenitors give rise to inhibitory interneurons and may serve as an alternative cell source for large-scale cell transplantation for epilepsy after in vitro expansion. We investigated whether modifications in the culture medium of MGE neurospheres affect neuronal differentiation and expression of MGE-specific genes. In vivo, we compared anticonvulsant effects and cell differentiation pattern among neurospheres grown in different culture media and compared them with freshly harvested MGE cells. METHODS: We used four variations of cell culture: standard, containing growth factors (EGF/FGF-2) (GF); addition of retinoic acid (GF-RA); withdrawal of EGF/FGF-2 (WD); and addition of retinoic acid and withdrawal of EGF/FGF-2 (WD-RA). Based on in vitro results neurosphere-grown (WD-RA or GF conditions) or fresh MGE cells were transplanted into the hippocampus. RESULTS: In vitro WD-RA showed increased neuronal population and higher expression of Dlx1, Nkx2.1, and Lhx6 genes in comparison with GF culture condition. After transplantation, fresh MGE cells and neurospheres (GF) showed anticonvulsant effects. However, fresh MGE cells differentiated preferentially into inhibitory neurons, while GF gave rise to glial cells. CONCLUSION: We conclude that freshly isolated and neurosphere-grown MGE cells reduced seizures by different mechanisms (inhibitory interneurons vs. astrocytes). Fresh MGE cells appear more appropriate for cell therapies targeting inhibitory interneurons for conferring anticonvulsant outcomes.


Subject(s)
Epilepsy/metabolism , Epilepsy/surgery , Median Eminence/cytology , Neurons/transplantation , Animals , Cell Differentiation/drug effects , Cells, Cultured , Creatine/metabolism , Disease Models, Animal , Embryo, Mammalian , Epidermal Growth Factor/pharmacology , Epilepsy/chemically induced , Fibroblast Growth Factor 2/pharmacology , Glial Fibrillary Acidic Protein/metabolism , LIM-Homeodomain Proteins/metabolism , Muscarinic Agonists/toxicity , Neurons/drug effects , Neuropeptide Y/metabolism , Parvalbumins/metabolism , Phosphopyruvate Hydratase/metabolism , Pilocarpine/toxicity , Rats , Rats, Sprague-Dawley , Tretinoin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...