Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
New Phytol ; 214(2): 865-878, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28085203

ABSTRACT

Historical trajectories of tree species during the late Quaternary have been well reconstructed through genetic and palaeobotanical studies. However, many congeneric tree species are interfertile, and the timing and contribution of introgression to species divergence during their evolutionary history remains largely unknown. We quantified past and current gene flow events between four morphologically divergent oak species (Quercus petraea, Q. robur, Q. pyrenaica, Q. pubescens), by two independent inference methods: diffusion approximation to the joint frequency spectrum (∂a∂i) and approximate Bayesian computation (ABC). For each pair of species, alternative scenarios of speciation allowing gene flow over different timescales were evaluated. Analyses of 3524 single nucleotide polymorphisms (SNPs) randomly distributed in the genome, showed that these species evolved in complete isolation for most of their history, but recently came into secondary contact, probably facilitated by the most recent period of postglacial warming. We demonstrated that: there was sufficient genetic differentiation before secondary contact for the accumulation of barriers to gene flow; and current European white oak genomes are a mosaic of genes that have crossed species boundaries and genes impermeable to gene flow.


Subject(s)
Genetic Speciation , Quercus/genetics , Bayes Theorem , Europe , Genetic Variation , Likelihood Functions , Phylogeny , Principal Component Analysis , Species Specificity
2.
Front Plant Sci ; 7: 510, 2016.
Article in English | MEDLINE | ID: mdl-27148332

ABSTRACT

The genus Eucalyptus encloses several species with high ecological and economic value, being the subgenus Symphyomyrtus one of the most important. Species such as E. grandis and E. globulus are well characterized at the molecular level but knowledge regarding genome and chromosome organization is very scarce. Here we characterized and compared the karyotypes of three economically important species, E. grandis, E. globulus, and E. calmadulensis, and three with ecological relevance, E. pulverulenta, E. cornuta, and E. occidentalis, through an integrative approach including genome size estimation, fluorochrome banding, rDNA FISH, and BAC landing comprising genes involved in lignin biosynthesis. All karyotypes show a high degree of conservation with pericentromeric 35S and 5S rDNA loci in the first and third pairs, respectively. GC-rich heterochromatin was restricted to the 35S rDNA locus while the AT-rich heterochromatin pattern was species-specific. The slight differences in karyotype formulas and distribution of AT-rich heterochromatin, along with genome sizes estimations, support the idea of Eucalyptus genome evolution by local expansions of heterochromatin clusters. The unusual co-localization of both rDNA with AT-rich heterochromatin was attributed mainly to the presence of silent transposable elements in those loci. The cinnamoyl CoA reductase gene (CCR1) previously assessed to linkage group 10 (LG10) was clearly localized distally at the long arm of chromosome 9 establishing an unexpected correlation between the cytogenetic chromosome 9 and the LG10. Our work is novel and contributes to the understanding of Eucalyptus genome organization which is essential to develop successful advanced breeding strategies for this genus.

3.
New Phytol ; 206(4): 1297-313, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25684249

ABSTRACT

Lignin, a major component of secondary cell walls, hinders the optimal processing of wood for industrial uses. The recent availability of the Eucalyptus grandis genome sequence allows comprehensive analysis of the genes encoding the 11 protein families specific to the lignin branch of the phenylpropanoid pathway and identification of those mainly involved in xylem developmental lignification. We performed genome-wide identification of putative members of the lignin gene families, followed by comparative phylogenetic studies focusing on bona fide clades inferred from genes functionally characterized in other species. RNA-seq and microfluid real-time quantitative PCR (RT-qPCR) expression data were used to investigate the developmental and environmental responsive expression patterns of the genes. The phylogenetic analysis revealed that 38 E. grandis genes are located in bona fide lignification clades. Four multigene families (shikimate O-hydroxycinnamoyltransferase (HCT), p-coumarate 3-hydroxylase (C3H), caffeate/5-hydroxyferulate O-methyltransferase (COMT) and phenylalanine ammonia-lyase (PAL)) are expanded by tandem gene duplication compared with other plant species. Seventeen of the 38 genes exhibited strong, preferential expression in highly lignified tissues, probably representing the E. grandis core lignification toolbox. The identification of major genes involved in lignin biosynthesis in E. grandis, the most widely planted hardwood crop world-wide, provides the foundation for the development of biotechnology approaches to develop tree varieties with enhanced processing qualities.


Subject(s)
Eucalyptus/genetics , Genome, Plant , Lignin/metabolism , Computer Simulation , Environment , Eucalyptus/enzymology , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant , Hydroxylation , Methylation , Phenylalanine Ammonia-Lyase/genetics , Phylogeny , Propanols/metabolism , Real-Time Polymerase Chain Reaction , Sequence Analysis, RNA
4.
Plant Cell Physiol ; 56(4): 700-14, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25577568

ABSTRACT

Auxin plays a pivotal role in various plant growth and development processes, including vascular differentiation. The modulation of auxin responsiveness through the auxin perception and signaling machinery is believed to be a major regulatory mechanism controlling cambium activity and wood formation. To gain more insights into the roles of key Aux/IAA gene regulators of the auxin response in these processes, we identified and characterized members of the Aux/IAA family in the genome of Eucalyptus grandis, a tree of worldwide economic importance. We found that the gene family in Eucalyptus is slightly smaller than that in Populus and Arabidopsis, but all phylogenetic groups are represented. High-throughput expression profiling of different organs and tissues highlighted several Aux/IAA genes expressed in vascular cambium and/or developing xylem, some showing differential expression in response to developmental (juvenile vs. mature) and/or to environmental (tension stress) cues. Based on the expression profiles, we selected a promising candidate gene, EgrIAA4, for functional characterization. We showed that EgrIAA4 protein is localized in the nucleus and functions as an auxin-responsive repressor. Overexpressing a stabilized version of EgrIAA4 in Arabidopsis dramatically impeded plant growth and fertility and induced auxin-insensitive phenotypes such as inhibition of primary root elongation, lateral root emergence and agravitropism. Interestingly, the lignified secondary walls of the interfascicular fibers appeared very late, whereas those of the xylary fibers were virtually undetectable, suggesting that EgrIAA4 may play crucial roles in fiber development and secondary cell wall deposition.


Subject(s)
Eucalyptus/growth & development , Eucalyptus/genetics , Genome, Plant , Indoleacetic Acids/metabolism , Multigene Family , Plant Proteins/genetics , Wood/growth & development , Arabidopsis/genetics , Cell Differentiation , Cell Nucleus/metabolism , Chromosomes, Plant/genetics , Environment , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant , Genetic Association Studies , Gravitropism , Organ Specificity/genetics , Phenotype , Phylogeny , Plant Development , Plant Proteins/metabolism , Plants, Genetically Modified , Protein Transport , Sequence Analysis, DNA , Species Specificity , Subcellular Fractions/metabolism , Transcription, Genetic , Wood/genetics , Xylem/cytology
5.
PLoS One ; 9(9): e108906, 2014.
Article in English | MEDLINE | ID: mdl-25269088

ABSTRACT

Auxin is a central hormone involved in a wide range of developmental processes including the specification of vascular stem cells. Auxin Response Factors (ARF) are important actors of the auxin signalling pathway, regulating the transcription of auxin-responsive genes through direct binding to their promoters. The recent availability of the Eucalyptus grandis genome sequence allowed us to examine the characteristics and evolutionary history of this gene family in a woody plant of high economic importance. With 17 members, the E. grandis ARF gene family is slightly contracted, as compared to those of most angiosperms studied hitherto, lacking traces of duplication events. In silico analysis of alternative transcripts and gene truncation suggested that these two mechanisms were preeminent in shaping the functional diversity of the ARF family in Eucalyptus. Comparative phylogenetic analyses with genomes of other taxonomic lineages revealed the presence of a new ARF clade found preferentially in woody and/or perennial plants. High-throughput expression profiling among different organs and tissues and in response to environmental cues highlighted genes expressed in vascular cambium and/or developing xylem, responding dynamically to various environmental stimuli. Finally, this study allowed identification of three ARF candidates potentially involved in the auxin-regulated transcriptional program underlying wood formation.


Subject(s)
Eucalyptus/genetics , Genome, Plant , Plant Proteins/metabolism , Transcription Factors/metabolism , Arabidopsis/genetics , Chromosome Mapping , Gene Expression Profiling , Gene Expression Regulation, Developmental , Multigene Family , Phylogeny , Plant Proteins/classification , Plant Proteins/genetics , Protoplasts/metabolism , Nicotiana/metabolism , Transcription Factors/classification , Transcriptome
6.
BMC Res Notes ; 6: 25, 2013 Jan 22.
Article in English | MEDLINE | ID: mdl-23339526

ABSTRACT

BACKGROUND: Sequencing-by-synthesis technologies significantly improve over the Sanger method in terms of speed and cost per base. However, they still usually fail to compete in terms of read length and quality. Current high-throughput implementations of the pyrosequencing technique yield reads whose length approach those of the capillary electrophoresis method. A less obvious question is whether their quality is affected by platform-specific sequencing errors. RESULTS: We present an empirical study aimed at assessing the quality and characterising sequencing errors for high throughput pyrosequencing data. We have developed a procedure for extracting sequencing error data from genome assemblies and study their characteristics, in particular the length distribution of indel gaps and their relation to the sequence contexts where they occur. We used this procedure to analyse data from three prokaryotic genomes sequenced with the GS FLX technology. We also compared two models previously employed with success for peptide sequence alignment. CONCLUSIONS: We observed an overall very low error rate in the analysed data, with indel errors being much more abundant than substitutions. We also observed a dependence between the length of the gaps and that of the homopolymer context where they occur. As with protein alignments, a power-law model seems to approximate the indel errors more accurately, although the results are not so conclusive as to justify a depart from the commonly used affine gap penalty scheme. In whichever case, however, our procedure can be used to estimate more realistic error model parameters.


Subject(s)
Artifacts , Genome, Bacterial , High-Throughput Nucleotide Sequencing/statistics & numerical data , Models, Statistical , Algorithms , Base Sequence , INDEL Mutation , Molecular Sequence Data , Mycoplasma hyopneumoniae/genetics , Sequence Alignment , Staphylococcus aureus/genetics , Streptococcus pneumoniae/genetics
7.
Plant Cell Physiol ; 53(12): 2101-16, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23161857

ABSTRACT

Interest in the genomics of Eucalyptus has skyrocketed thanks to the recent sequencing of the genome of Eucalyptus grandis and to a growing number of large-scale transcriptomic studies. Quantitative reverse transcription-PCR (RT-PCR) is the method of choice for gene expression analysis and can now also be used as a high-throughput method. The selection of appropriate internal controls is becoming of utmost importance to ensure accurate expression results in Eucalyptus. To this end, we selected 21 candidate reference genes and used high-throughput microfluidic dynamic arrays to assess their expression among a large panel of developmental and environmental conditions with a special focus on wood-forming tissues. We analyzed the expression stability of these genes by using three distinct statistical algorithms (geNorm, NormFinder and ΔCt), and used principal component analysis to compare methods and rankings. We showed that the most stable genes identified depended not only on the panel of biological samples considered but also on the statistical method used. We then developed a comprehensive integration of the rankings generated by the three methods and identified the optimal reference genes for 17 distinct experimental sets covering 13 organs and tissues, as well as various developmental and environmental conditions. The expression patterns of Eucalyptus master genes EgMYB1 and EgMYB2 experimentally validated our selection. Our findings provide an important resource for the selection of appropriate reference genes for accurate and reliable normalization of gene expression data in the organs and tissues of Eucalyptus trees grown in a range of conditions including abiotic stresses.


Subject(s)
Eucalyptus/genetics , Gene Expression Profiling/standards , Genes, Plant/genetics , Reverse Transcriptase Polymerase Chain Reaction/standards , Algorithms , Cold Temperature , DNA Primers/genetics , Droughts , Environment , Eucalyptus/growth & development , Eucalyptus/physiology , Fertilization , Gene Expression , Gene Expression Regulation, Plant , Organ Specificity , Reference Standards , Stress, Physiological , Xylem/genetics , Xylem/growth & development , Xylem/physiology
8.
BMC Plant Biol ; 11: 79, 2011 May 10.
Article in English | MEDLINE | ID: mdl-21569262

ABSTRACT

BACKGROUND: Small RNAs (sRNAs) are 20-24 nucleotide (nt) RNAs and are involved in plant development and response to abiotic stresses. Plants have several sRNA pathways implicated in the transcriptional and post-transcriptional silencing of gene expression. Two key enzyme families common to all pathways are the Dicer-like (DCL) proteins involved in sRNAs maturation and the Argonautes (AGOs) involved in the targeting and functional action of sRNAs. Post-transcriptional silencing mediated by AGOs may occur by cleavage or translational repression of target mRNA's, while transcriptional silencing may be controlled by DNA methylation and chromatin remodeling. Thus far, these gene families have not been characterized in legumes, nor has their involvement in adaptation to water deficit been studied. RESULTS: A bioinformatic search in Medicago truncatula genome databases, using Arabidopsis thaliana AGO and DCL cDNA and protein sequences, identified three sequences encoding for putative Dicer-like genes and twelve sequences encoding for putative Argonaute genes. Under water deficit conditions and mainly in roots, MtDCL1 and MtAGO1, two enzymes probably involved in the processing and activation of microRNAs (miRNAs), increased their transcript levels. mir162 which target DCL1 mRNA and mir168 which target AGO1 mRNA reduced their expression in the roots of plants subjected to water deficit. Three putative genes, MtDCL3, MtAGO4b and MtAGO4c probably involved in DNA methylation mechanisms, increased their mRNA levels. However, the mRNA levels of MtAGO6 reduced, which probably encodes a protein with functions similar to MtAGO4. MtAGO7 mRNA levels increased and possibly encodes a protein involved in the production of trans-acting small interfering RNAs. The transcript abundance of MtAGO12a, MtAGO12b and MtAGO12c reduced under water deprivation. Plants recovered from water deprivation reacquire the mRNA levels of the controls. CONCLUSIONS: Our work demonstrates that in M. truncatula the transcript accumulation of the components of small RNA pathways is being modulated under water deficit. This shows that the transcriptional and post-transcriptional control of gene expression mediated by sRNAs is probably involved in plant adaptation to abiotic environmental changes. In the future this will allow the manipulation of these pathways providing a more efficient response of legumes towards water shortage.


Subject(s)
Dehydration/genetics , Dehydration/metabolism , Medicago truncatula/genetics , Medicago truncatula/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Adaptation, Biological/genetics , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/biosynthesis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Base Sequence , Gene Expression Regulation, Plant , Humans , Molecular Sequence Data , Phylogeny , Plant Proteins/biosynthesis , Plant Proteins/genetics , Plant Proteins/metabolism , RNA, Plant/genetics , RNA-Binding Proteins/biosynthesis , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Ribonuclease III/biosynthesis , Ribonuclease III/genetics , Ribonuclease III/metabolism , Transcription, Genetic
9.
BMC Genomics ; 12: 137, 2011 Mar 04.
Article in English | MEDLINE | ID: mdl-21375742

ABSTRACT

BACKGROUND: Eucalyptus species are among the most planted hardwoods in the world because of their rapid growth, adaptability and valuable wood properties. The development and integration of genomic resources into breeding practice will be increasingly important in the decades to come. Bacterial artificial chromosome (BAC) libraries are key genomic tools that enable positional cloning of important traits, synteny evaluation, and the development of genome framework physical maps for genetic linkage and genome sequencing. RESULTS: We describe the construction and characterization of two deep-coverage BAC libraries EG_Ba and EG_Bb obtained from nuclear DNA fragments of E. grandis (clone BRASUZ1) digested with HindIII and BstYI, respectively. Genome coverages of 17 and 15 haploid genome equivalents were estimated for EG_Ba and EG_Bb, respectively. Both libraries contained large inserts, with average sizes ranging from 135 Kb (Eg_Bb) to 157 Kb (Eg_Ba), very low extra-nuclear genome contamination providing a probability of finding a single copy gene ≥ 99.99%. Libraries were screened for the presence of several genes of interest via hybridizations to high-density BAC filters followed by PCR validation. Five selected BAC clones were sequenced and assembled using the Roche GS FLX technology providing the whole sequence of the E. grandis chloroplast genome, and complete genomic sequences of important lignin biosynthesis genes. CONCLUSIONS: The two E. grandis BAC libraries described in this study represent an important milestone for the advancement of Eucalyptus genomics and forest tree research. These BAC resources have a highly redundant genome coverage (> 15×), contain large average inserts and have a very low percentage of clones with organellar DNA or empty vectors. These publicly available BAC libraries are thus suitable for a broad range of applications in genetic and genomic research in Eucalyptus and possibly in related species of Myrtaceae, including genome sequencing, gene isolation, functional and comparative genomics. Because they have been constructed using the same tree (E. grandis BRASUZ1) whose full genome is being sequenced, they should prove instrumental for assembly and gap filling of the upcoming Eucalyptus reference genome sequence.


Subject(s)
Eucalyptus/genetics , Gene Library , Genome, Plant , Genomics/methods , Lignin/biosynthesis , Chromosomes, Artificial, Bacterial , DNA, Plant/genetics , Genome, Chloroplast , Lignin/genetics , Molecular Sequence Annotation , Sequence Analysis, DNA
10.
Proteomics ; 9(17): 4154-75, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19688748

ABSTRACT

Proteins from potato (Solanum tuberosum L.) tuber slices, related to the wound-healing process, were separated by 2-DE and identified by an MS analysis in MS and MS/MS mode. Slicing triggered differentiation processes that lead to changes in metabolism, activation of defence and cell-wall reinforcement. Proteins related to storage, cell growth and division, cell structure, signal transduction, energy production, disease/defence mechanisms and secondary metabolism were detected. Image analysis of the 2-DE gels revealed a time-dependent change in the complexity of the polypeptide patterns. By microscopic observation the polyalyphatic domain of suberin was clearly visible by D4, indicating that a closing layer (primary suberisation) was formed by then. A PCA of the six sampling dates revealed two time phases, D0-D2 and D4-D8, with a border position between D2 and D4. Moreover, a PCA of differentially expressed proteins indicated the existence of a succession of proteomic events leading to wound-periderm reconstruction. Some late-expressed proteins (D6-D8), including a suberisation-associated anionic peroxidase, have also been identified in the native periderm. Despite this, protein patterns of D8 slices and native periderm were still different, suggesting that the processes of wound-periderm formation are extended in time and not fully equivalent. The information presented in this study gives clues for further work on wound healing-periderm formation processes.


Subject(s)
Plant Diseases , Plant Tubers/metabolism , Proteomics , Solanum tuberosum/metabolism , Electrophoresis, Gel, Two-Dimensional , Gene Expression Profiling , Mass Spectrometry , Peptides/chemistry , Plant Proteins/analysis , Plant Proteins/chemistry , Plant Tubers/cytology , Principal Component Analysis , Solanum tuberosum/cytology
11.
New Phytol ; 178(2): 283-301, 2008.
Article in English | MEDLINE | ID: mdl-18298434

ABSTRACT

Environmental, developmental and genetic factors affect variation in wood properties at the chemical, anatomical and physical levels. Here, the phenotypic variation observed along the tree stem was explored and the hypothesis tested that this variation could be the result of the differential expression of genes/proteins during wood formation. Differentiating xylem samples of maritime pine (Pinus pinaster) were collected from the top (crown wood, CW) to the bottom (base wood, BW) of adult trees. These samples were characterized by Fourier transform infrared spectroscopy (FTIR) and analytical pyrolysis. Two main groups of samples, corresponding to CW and BW, could be distinguished from cell wall chemical composition. A genomic approach, combining large-scale production of expressed sequence tags (ESTs), gene expression profiling and quantitative proteomics analysis, allowed identification of 262 unigenes (out of 3512) and 231 proteins (out of 1372 spots) that were differentially expressed along the stem. A good relationship was found between functional categories from transcriptomic and proteomic data. A good fit between the molecular mechanisms involved in CW-BW formation and these two types of wood phenotypic differences was also observed. This work provides a list of candidate genes for wood properties that will be tested in forward genetics.


Subject(s)
Ecosystem , Gene Expression Profiling , Gene Expression Regulation, Plant , Pinus/chemistry , Pinus/genetics , Wood/metabolism , Aging , Phenotype , Plant Proteins/analysis , Plant Proteins/genetics , Proteome , Xylem/cytology , Xylem/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...