Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Vis Comput Graph ; 21(1): 4-17, 2015 Jan.
Article in English | MEDLINE | ID: mdl-26357017

ABSTRACT

Automatic data classification is a computationally intensive task that presents variable precision and is considerably sensitive to the classifier configuration and to data representation, particularly for evolving data sets. Some of these issues can best be handled by methods that support users' control over the classification steps. In this paper, we propose a visual data classification methodology that supports users in tasks related to categorization such as training set selection; model creation, application and verification; and classifier tuning. The approach is then well suited for incremental classification, present in many applications with evolving data sets. Data set visualization is accomplished by means of point placement strategies, and we exemplify the method through multidimensional projections and Neighbor Joining trees. The same methodology can be employed by a user who wishes to create his or her own ground truth (or perspective) from a previously unlabeled data set. We validate the methodology through its application to categorization scenarios of image and text data sets, involving the creation, application, verification, and adjustment of classification models.

2.
IEEE Trans Vis Comput Graph ; 17(12): 2459-68, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22034367

ABSTRACT

An alternative form to multidimensional projections for the visual analysis of data represented in multidimensional spaces is the deployment of similarity trees, such as Neighbor Joining trees. They organize data objects on the visual plane emphasizing their levels of similarity with high capability of detecting and separating groups and subgroups of objects. Besides this similarity-based hierarchical data organization, some of their advantages include the ability to decrease point clutter; high precision; and a consistent view of the data set during focusing, offering a very intuitive way to view the general structure of the data set as well as to drill down to groups and subgroups of interest. Disadvantages of similarity trees based on neighbor joining strategies include their computational cost and the presence of virtual nodes that utilize too much of the visual space. This paper presents a highly improved version of the similarity tree technique. The improvements in the technique are given by two procedures. The first is a strategy that replaces virtual nodes by promoting real leaf nodes to their place, saving large portions of space in the display and maintaining the expressiveness and precision of the technique. The second improvement is an implementation that significantly accelerates the algorithm, impacting its use for larger data sets. We also illustrate the applicability of the technique in visual data mining, showing its advantages to support visual classification of data sets, with special attention to the case of image classification. We demonstrate the capabilities of the tree for analysis and iterative manipulation and employ those capabilities to support evolving to a satisfactory data organization and classification.

SELECTION OF CITATIONS
SEARCH DETAIL
...