Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Braz Oral Res ; 34: e111, 2020.
Article in English | MEDLINE | ID: mdl-32876124

ABSTRACT

This study evaluated the effect of selective carious tissue removal on the fracture strength and failure mode of composite restorations in molars presenting only the buccal cusps. Deep cavities were prepared on the occlusal surface, and the lingual cusps were removed. Carious lesions in the middle of the pulpal wall were artificially induced with acetic acid (pH = 4.5) for 35 days. The demineralized dentin was left intact or was completely removed prior to restoration with a bulk-fill composite (n = 10). Images of the specimens were obtained by optical coherence tomography (OCT) before and after the caries induction/removal. The mechanical resistance to fracture by axial compressive loading and the failure type and extension were determined. The pulpal wall/composite interface of the fractured specimens was analyzed by OCT. The data were analyzed for significance with t-tests (α = 0.05). The deepest cavities and a more frequent occurrence of pulpal exposure were observed more often for non-selective carious tissue removal. The protocol of carious tissue removal did not affect the fracture strength (p = 0.554). An increased occurrence of catastrophic failures involving the roots was observed for non-selective carious tissue removal. Some occurrences of restoration displacement or cracks throughout the resin-dentin were observed only for the selective carious tissue approach. Selective carious tissue removal is a feasible approach to extensively damaged teeth since it reduced the occurrence of pulpal exposure and root fractures, without compromising the fracture strength.


Subject(s)
Fractures, Bone , Composite Resins , Dental Caries , Dental Restoration, Permanent , Humans , Molar
2.
Braz. oral res. (Online) ; 34: e111, 2020. tab, graf
Article in English | LILACS, BBO - Dentistry | ID: biblio-1132721

ABSTRACT

Abstract This study evaluated the effect of selective carious tissue removal on the fracture strength and failure mode of composite restorations in molars presenting only the buccal cusps. Deep cavities were prepared on the occlusal surface, and the lingual cusps were removed. Carious lesions in the middle of the pulpal wall were artificially induced with acetic acid (pH = 4.5) for 35 days. The demineralized dentin was left intact or was completely removed prior to restoration with a bulk-fill composite (n = 10). Images of the specimens were obtained by optical coherence tomography (OCT) before and after the caries induction/removal. The mechanical resistance to fracture by axial compressive loading and the failure type and extension were determined. The pulpal wall/composite interface of the fractured specimens was analyzed by OCT. The data were analyzed for significance with t-tests (α = 0.05). The deepest cavities and a more frequent occurrence of pulpal exposure were observed more often for non-selective carious tissue removal. The protocol of carious tissue removal did not affect the fracture strength (p = 0.554). An increased occurrence of catastrophic failures involving the roots was observed for non-selective carious tissue removal. Some occurrences of restoration displacement or cracks throughout the resin-dentin were observed only for the selective carious tissue approach. Selective carious tissue removal is a feasible approach to extensively damaged teeth since it reduced the occurrence of pulpal exposure and root fractures, without compromising the fracture strength.


Subject(s)
Humans , Fractures, Bone , Composite Resins , Dental Caries , Dental Restoration, Permanent , Molar
3.
Braz Oral Res ; 282014.
Article in English | MEDLINE | ID: mdl-25184496

ABSTRACT

This study evaluated the ion exchange at the material/enamel interface and the preventive effect of restorative materials submitted to cariogenic challenge against white spot. Restorations in enamel/dentin of bovine teeth were performed with composite resin (Filtek™ Z250 - control group) and glass-ionomers cements - GICs (Ionomaster R™ and Fuji IX™ - experimental groups). Samples were grouped and submitted to neutral saliva (n = 15) or pH-cycling regimen (n = 15). After eight days of pH cycling, material/enamel interfaces were analyzed by EDX in order to determine the differences (p < 0.05) in ionic exchange (Ca, P, F, Al, Sr, and Si) between restorative materials and teeth. In addition, enamel white spot lesion formation was evaluated macroscopically (p < 0.05). Sr content was higher in the enamel of the control group (p > 0.05) versus the experimental groups. Ca and P content were higher in enamel than in restorative materials. After pH cycling, the GIC enamel bulk showed a significantly higher Sr content compared with the composite resin (p < 0.05). Filtek™ Z250 was not able to prevent white spot formation around restorations in comparison with Ionomaster R™ (p < 0.001) and Fuji IX™ (p = 0.004). GICs reduced white spot formation and presented a preventive effect (p = 0.051). GICs presented a greater percentage of fluoride, aluminum, and strontium, and proved effective in white spot lesion prevention around restorations.


Subject(s)
Composite Resins/chemistry , Dental Caries/prevention & control , Dental Enamel/drug effects , Dental Restoration, Permanent/methods , Glass Ionomer Cements/chemistry , Minerals/chemistry , Animals , Cattle , Composite Resins/therapeutic use , Glass Ionomer Cements/therapeutic use , Ion Exchange , Materials Testing , Microscopy, Electron, Scanning , Minerals/therapeutic use , Reference Values , Reproducibility of Results , Statistics, Nonparametric , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...