Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Inflamm Res ; 59(10): 861-9, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20396927

ABSTRACT

INTRODUCTION: Ischemia and reperfusion injury (IRI) are mainly caused by leukocyte activation, endothelial dysfunction and production of reactive oxygen species. Moreover, IRI can lead to a systemic response affecting distant organs, such as the lungs. AIM: The objective was to study the pulmonary inflammatory systemic response after renal IRI. METHODS: Male C57Bl/6 mice were subjected to 45 min of bilateral renal ischemia, followed by 4, 6, 12, 24 and 48 h of reperfusion. Blood was collected to measure serum creatinine and cytokine concentrations. Bronchoalveolar lavage fluid (BALF) was collected to determine the number of cells and PGE(2) concentration. Expressions of iNOS and COX-2 in lung were determined by Western blot. Gene analyses were quantified by real time PCR. RESULTS: Serum creatinine increased in the IRI group compared to sham mainly at 24 h after IRI (2.57 +/- 0.16 vs. 0.43 +/- 0.07, p < 0.01). The total number of cells in BAL fluid was higher in the IRI group in comparison with sham, 12 h (100 x 10(4) +/- 15.63 vs. 18.1 x 10(4) +/- 10.5, p < 0.05) 24 h (124 x 10(4) +/- 8.94 vs. 23.2 x 10(4) +/- 3.5, p < 0.05) and 48 h (79 x 10(4) +/- 15.72 vs. 22.2 x 10(4) +/- 4.2, p < 0.05), mainly by mononuclear cells and neutrophils. Pulmonary COX-2 and iNOS were up-regulated in the IRI group. TNF-alpha, IL-1beta, MCP-1, KC and IL-6 mRNA expression were up-regulated in kidney and lungs 24 h after renal IRI. ICAM-1 mRNA was up-regulated in lungs 24 h after renal IRI. Serum TNF-alpha, IL-1beta and MCP-1 and BALF PGE(2) concentrations were increased 24 h after renal IRI. CONCLUSION: Renal IRI induces an increase of cellular infiltration, up-regulation of COX-2, iNOS and ICAM-1, enhanced chemokine expression and a Th1 cytokine profile in lung demonstrating that the inflammatory response is indeed systemic, possibly leading to an amplification of renal injury.


Subject(s)
Kidney/physiopathology , Pneumonia , Reperfusion Injury , Systemic Inflammatory Response Syndrome , Animals , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Chemokines/blood , Chemokines/immunology , Cyclooxygenase 2/immunology , Cytokines/blood , Cytokines/immunology , Intercellular Adhesion Molecule-1/immunology , Kidney/immunology , Male , Mice , Mice, Inbred C57BL , Nitric Oxide Synthase Type II/immunology , Pneumonia/etiology , Pneumonia/immunology , Pneumonia/physiopathology , Reperfusion Injury/complications , Reperfusion Injury/immunology , Reperfusion Injury/physiopathology , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...