Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(25): 27632-27642, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38947813

ABSTRACT

Chikungunya virus (CHIKV) has been reported in over 120 countries and is the causative agent of Chikungunya fever. The debilitating nature of this disease, which can persist months to years after acute infection, drastically impacts the quality of life of patients. Yet, specific antivirals are lacking for the treatment of this disease, which makes the search for new drugs necessary. In this context, the nsP2 protease emerges as an attractive therapeutic target, and drug repurposing strategies have proven to be valuable. Therefore, we combined in silico and in vitro methods to identify known drugs as potential CHIKV nsP2 protease inhibitors with antiviral properties within DrugBank. Herein, we developed a hybrid virtual screening pipeline comprising pharmacophore- and target-based screening, drug-like, and pharmaceutical filtering steps. Six virtual hits were obtained, and two of them, capecitabine (CPB) and oxibendazole (OBZ), were evaluated against CHIKV replication in Vero cells. CPB did not present antiviral activity, whereas OBZ inhibited the replication of two different strains of CHIKV, namely, 181-25 (Asian genotype) and BRA/RJ/18 (clinical isolate from ECSA genotype). OBZ showed potent antiviral activity against the CHIKV BRA/RJ/18 (EC50 = 11.4 µM) with a high selectivity index (>44). Analogs of OBZ (albendazole, fenbendazole, and mebendazole) were also evaluated, but none exhibited anti-CHIKV activity, and further, their stereoelectronic features were analyzed. Additionally, we observed that OBZ acts mainly at post-entry steps. Hence, our results support further in vivo studies to investigate the antiviral potential of OBZ, which offers a new alternative to fight CHIKV infections.

2.
J Nat Prod ; 84(4): 1373-1384, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33822611

ABSTRACT

Brown algae and soft corals represent the main marine sources of dolabellane diterpenes. The antiviral activity of dolabellanes has been studied for those isolated from algae, whereas dolabellanes isolated from soft corals have been barely studied. In this work, a collection of dolabellane diterpenes consisting of five natural and 21 semisynthetic derivatives was constructed, and their antiviral activities against Zika (ZIKV) and Chikungunya (CHIKV) viruses were tested. Dolabellatrienone (1) and (1R,7R,8R,11S)-7,8-epoxy-13-keto-dolabella-3,12(18)-diene (2), isolated from Eunicea genus soft corals, were employed to obtain 21 dolabellane and dolastane diterpenes by reactions such as allylic oxidations, reductions, acid-catalyzed epoxide ring opening, and acetylations. All of the compounds were identified by a combination of one- and two-dimensional NMR, mass spectrometry, and X-ray diffraction experiments. The cytotoxicites against Vero cells and the antiviral activities against ZIKV and CHIKV was tested to calculate the half-maximal effective concentration (EC50) and selectivity indexes (SIs). In general, the addition of oxygen-containing functional groups improved the bioactivity of dolabellane and dolastane diterpenes against ZIKV and CHIKV replication. Compound 9 showed an EC50 = 0.92 ± 0.08 µM and SI = 820 against ZIKV.


Subject(s)
Anthozoa/chemistry , Antiviral Agents/pharmacology , Chikungunya virus/drug effects , Diterpenes/pharmacology , Zika Virus/drug effects , Animals , Antiviral Agents/chemical synthesis , Caribbean Region , Chlorocebus aethiops , Colombia , Diterpenes/chemical synthesis , Molecular Structure , Oxygen/chemistry , Vero Cells
3.
Biomed Res Int ; 2020: 2813253, 2020.
Article in English | MEDLINE | ID: mdl-32461975

ABSTRACT

Alphaviruses are arthropod-borne viruses that can cause fever, rash, arthralgias, and encephalitis. The mosquito species Aedes aegypti and Aedes albopictus are the most frequent transmitters of alphaviruses. There are no effective vaccines or specific antivirals available for the treatment of alphavirus-related infections. Interestingly, changes in ion concentration in host cells have been characterized as critical regulators of the alphavirus life cycle, including fusion with the host cell, glycoprotein trafficking, genome translation, and viral budding. Cardiac glycosides, which are classical inhibitors of the Na+ K+ ATPase (NKA), can inhibit alphavirus replication although their mechanisms of action are poorly understood. Nonetheless, results from multiple studies suggest that inhibition of NKA may be a suitable strategy for the development of alphavirus-specific antiviral treatments. This review is aimed at exploring the role of changes in ion concentration during alphavirus replication and at considering the possibility of NKA as a potential therapeutic target for antiviral drugs.


Subject(s)
Aedes/virology , Alphavirus Infections/virology , Alphavirus/physiology , Antiviral Agents/therapeutic use , Cardiac Glycosides/pharmacology , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Virus Replication/drug effects , Animals , Humans , Insect Vectors/virology , Ions/analysis
4.
mSystems ; 3(5)2018.
Article in English | MEDLINE | ID: mdl-30246145

ABSTRACT

According to the World Health Organization (WHO), an estimated 257 million people worldwide are chronically infected with hepatitis B virus (HBV), with approximately 15 million of them being coinfected with hepatitis D virus (HDV). To investigate the prevalence and transmission of HBV and HDV within the general population of a rural village in Cameroon, we analyzed serum samples from most (401/448) of the villagers. HBV surface antigen (HBsAg) was detected in 54 (13.5%) of the 401 samples, with 15% of them also containing anti-HDV antibodies. Although Cameroon has integrated HBV vaccination into their Expanded Program on Immunization for newborns in 2005, an HBsAg carriage rate of 5% was found in children below the age of 5 years. Of the 54 HBsAg-positive samples, 49 HBV pre-S/S sequences (7 genotype A and 42 genotype E sequences) could be amplified by PCR. In spite of the extreme geographical restriction in the recruitment of study participants, a remarkable genetic diversity within HBV genotypes was observed. Phylogenetic analysis of the sequences obtained from PCR products combined with demographic information revealed that the presence of some genetic variants was restricted to members of one household, indicative of intrafamilial transmission, which appears to take place at least in part perinatally from mother to child. Other genetic variants were more widely distributed, reflecting horizontal interhousehold transmission. Data for two households with more than one HBV-HDV-coinfected individual indicate that the two viruses are not necessarily transmitted together, as family members with identical HBV sequences had different HDV statuses. IMPORTANCE This study revealed that the prevalence of HBV and HDV in a rural area of Cameroon is extremely high, underlining the pressing need for the improvement of control strategies. Systematic serological and phylogenetic analyses of HBV sequences turned out to be useful tools to identify networks of virus transmission within and between households. The high HBsAg carriage rate found among children demonstrates that implementation of the HBV birth dose vaccine and improvement of vaccine coverage will be key elements in preventing both HBV and HDV infections. In addition, the high HBsAg carriage rate in adolescents and adults emphasizes the need for identification of chronically infected individuals and linkage to WHO-recommended treatment to prevent progression to liver cirrhosis and hepatocellular carcinoma.

5.
PLoS One ; 11(6): e0156864, 2016.
Article in English | MEDLINE | ID: mdl-27271290

ABSTRACT

Hepatitis B virus (HBV) infections account for approximately 780,000 deaths per year, most of which occur in the developing world. Co-infection with HBV and hepatitis delta virus (HDV) may lead to the most severe form of viral hepatitis. In Ghana, knowledge on the prevalence of HBV and HDV in the general population is scanty and the few genetic analyses of the prevailing HBV genotypes are dating back more than a decade. In the present study, 1,323 serum samples from individuals living in a rural area (Offin river valley) of Ghana were analyzed for the presence of the hepatitis B surface antigen (HBsAg). Positive sera were subsequently tested for the presence of anti-HDV antibodies. A total of 107 (8%) sera were HBsAg positive with an 8.4% prevalence of anti-HDV antibodies among the HBsAg positives. Phylogenetic analysis based on HBV pre-S/S sequences, attributed all 52 typable samples to genotype E. All belonged to serotype ayw4. While 19 sequences clustered with those from a number of African countries, the other 33 formed a separate cluster distinguished by an intergroup mean distance of 1.5% from the pan-African HBV/E cluster. Successful implementation of HBV vaccination in the region was reflected by the low HBsAg carrier rate of 1.8% among children ≤11 years.


Subject(s)
Genetic Variation , Hepatitis B virus/genetics , Hepatitis B/virology , Adolescent , Adult , Aged , Aged, 80 and over , Carrier State , Child , Child, Preschool , DNA, Viral/analysis , DNA, Viral/genetics , Female , Ghana/epidemiology , Hepatitis Antibodies/blood , Hepatitis B/blood , Hepatitis B/epidemiology , Hepatitis B Surface Antigens/immunology , Humans , Infant , Male , Middle Aged , Phylogeny , Rivers , Sequence Analysis, DNA , Seroepidemiologic Studies , Young Adult
6.
Biol Direct ; 9: 21, 2014 Oct 29.
Article in English | MEDLINE | ID: mdl-25351961

ABSTRACT

UNLABELLED: Nucleotides and nucleosides act as potent extracellular messengers via the activation of the family of cell-surface receptors termed purinergic receptors. These receptors are categorized into P1 and P2 receptors (P2Rs). P2Rs are further classified into two distinct families, P2X receptors (P2XRs) and P2Y receptors (P2YRs). These receptors display broad tissue distribution throughout the body and are involved in several biological events. Immune cells express various P2Rs, and purinergic signaling mechanisms have been shown to play key roles in the regulation of many aspects of immune responses. Researchers have elucidated the involvement of these receptors in the host response to infections. The evidences indicate a dual function of these receptors, depending on the microorganism and the cellular model involved. Three recent reports have examined the relationship between the level of extracellular ATP, the mechanisms underlying purinergic receptors participating in the infection mechanism of HIV-1 in the cell. Although preliminary, these results indicate that purinergic receptors are putative pharmacological targets that should be further explored in future studies. REVIEWERS: This article was reviewed by Neil S. Greenspan and Rachel Gerstein.


Subject(s)
HIV Infections/metabolism , HIV-1/physiology , Receptors, Purinergic/metabolism , Signal Transduction , HIV Infections/immunology , Humans , Immunity
7.
Chem Biol Drug Des ; 81(2): 185-97, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22985449

ABSTRACT

Recently, many efforts have been made to develop N-methyl-D-aspartic acid receptor antagonists for treating different pathological conditions such as thrombo-embolic stroke, traumatic head injury, Huntington's, Parkinson's, and Alzheimer's diseases). However, as side-effects limit the use of most antagonists, new drugs are still required. In this work, we performed a (quantitative) structure-activity relationship analysis of 17 phenyl-amidine derivatives (1a-1q), reported as N-methyl-D-aspartic acid receptor antagonists, and used this data to rationally design the triazolyl-amidines. The best (quantitative) structure-activity relationship model constructed by multiple linear regression analysis presented high data fitting (R = 0.914) was able to explain 83.6% of the biological data variance (R(2) = 0.836), presented a satisfactory internal predictive ability (Q(2) = 0.609) and contained the descriptors (E(HOMO), Ovality and cLogP). Our assays confirmed that glutamate promotes an extensive cell death in avian neurons (77%) and 2a and 2b protected the neurons from the glutamate effect (from 77% to 27% and 45%, respectively). The results of neurotoxicity and cytotoxicity on Vero cells suggested the favorable profile of 2a and 2b. Also, the molecular modeling used to predict the activity, the interaction with the receptor and the pharmacokinetic and toxicity of the triazolyl-amidines pointed them as a promising class for further exploration as N-methyl-D-aspartic acid receptor antagonists.


Subject(s)
Amidines/chemistry , Neuroprotective Agents/chemistry , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Triazoles/chemistry , Amidines/pharmacology , Animals , Cell Death , Chlorocebus aethiops , Glutamic Acid/toxicity , Molecular Docking Simulation , Neuroprotective Agents/pharmacology , Receptors, N-Methyl-D-Aspartate/chemistry , Receptors, N-Methyl-D-Aspartate/metabolism , Retinal Neurons/cytology , Retinal Neurons/drug effects , Structure-Activity Relationship , Triazoles/pharmacology , Vero Cells
8.
Rev. bras. farmacogn ; 22(4): 861-867, jul.-ago. 2012. ilus, tab
Article in English | LILACS | ID: lil-640348

ABSTRACT

About 80% of the human adult population is infected with HSV-1. Although there are many anti-HSV-1 drugs available (acyclovir, ganciclovir, valaciclovir, foscarnet), their continuous use promotes the selection of resistant strains, mainly in ACV patients. In addition to resistance, the drugs also have toxicity, particularly when administration is prolonged. The study of new molecules isolated from green algae with potential antiviral activity represents a good opportunity for the development of antiviral drugs. Caulerpin, the major product from the marine algae Caulerpa Lamouroux (Caulerpales), is known for its biological activities such as antioxidant, antifungal, acetylcholinesterase inhibitor (AChE) and antibacterial activity. In this work, we show that caulerpin could be an alternative to acyclovir as an anti-HSV-1 drug that inhibits the alpha and beta phases of the replication cycle.

9.
Rev. bras. farmacogn ; 22(4): 881-888, jul.-ago. 2012. ilus
Article in English | LILACS | ID: lil-640356

ABSTRACT

HIV-1 reverse transcriptase (HIV-1 RT) is a therapeutic target for the treatment of HIV-positive individuals or those already showing AIDS symptoms. In this perspective, the identification of new inhibitors for this enzyme is of great importance in view of the growing viral resistance to the existing treatments. This resistance has compromised the quality of life of those infected with multidrug-resistant strains, whose treatment options are already limited, putting at risk these individuals lives. The literature has recognized marine organisms and their products as natural sources for the identification of new therapeutic options for different pathologies. In this brief review, we consider the structure of HIV-1 RT and its most common inhibitors, as well as some marine diterpenes originally reported as HIV-1 RT inhibitors to encourage the identification and development of new marine antiviral prototypes.

10.
Bioorg Med Chem Lett ; 22(15): 5055-8, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22763201

ABSTRACT

The emergence of a multidrug-resistant HIV-1 strain and the toxicity of anti-HIV-1 compounds approved for clinical use are the most significant problems facing antiretroviral therapies. Therefore, it is crucial to find new agents to overcome these issues. In this study, we synthesized a series of new oxoquinoline acyclonucleoside phosphonate analogues (ethyl 1-[(diisopropoxyphosphoryl)methyl]-4-oxo-1,4-dihydroquinoline-3-carboxylates 3a-3k), which contained different substituents at the C6 or C7 positions of the oxoquinoline nucleus and an N1-bonded phosphonate group. We subsequently investigated these compounds' in vitro inhibitory effects against HIV-1-infected peripheral blood mononuclear cells (PBMCs). The most active compounds were the fluoro-substituted derivatives 3f and 3g, which presented excellent EC(50) values of 0.4±0.2 µM (3f) and 0.2±0.005 µM (3g) and selectivity index values (SI) of 6240 and 14675, respectively.


Subject(s)
Anti-HIV Agents/chemistry , HIV-1/drug effects , Nucleosides/chemistry , Phosphorous Acids/chemistry , Quinolones/chemistry , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/toxicity , Humans , Phosphorous Acids/chemical synthesis , Phosphorous Acids/toxicity , Structure-Activity Relationship , Virus Replication/drug effects
11.
Curr Microbiol ; 62(5): 1349-54, 2011 May.
Article in English | MEDLINE | ID: mdl-21225264

ABSTRACT

Herpes simplex virus is an important human pathogen responsible for a range of diseases from mild uncomplicated mucocutaneous infections to life-threatening ones. Currently, the emergence of Herpes simplex virus resistant strains increased the need for more effective and less cytotoxic drugs for Herpes treatment. In this work, we synthesized a series of oxoquinoline derivatives and experimentally evaluated the antiviral activity against acyclovir resistant HSV-1 strain as well as their cytotoxity profile. The most active compound (3b), named here as Fluoroxaq-3b, showed a promising profile with a better cytotoxicity profile than acyclovir. The theoretical analysis of the structure-activity relationship of these compounds revealed some stereoelectronic properties such as lower LUMO energy and lipophilicity, besides a higher polar surface area and number of hydrogen bond acceptor groups as important parameters for the antiviral activity. Fluoroxaq-3b showed a good oral theoretical bioavailability, according to Lipinski rule of five, with a promising profile for further in vivo analysis.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Herpes Simplex/virology , Herpesvirus 1, Human/drug effects , Quinolones/chemistry , Quinolones/pharmacology , Animals , Antiviral Agents/chemical synthesis , Cell Line , Chlorocebus aethiops , Herpes Simplex/drug therapy , Humans , Quinolones/chemical synthesis , Structure-Activity Relationship , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...