Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 35(11): 3999-4010, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30789270

ABSTRACT

Poly(ethylene glycol) (PEG) polymers and PEG-conjugated lipids are widely used in bioengineering and drug transport applications. A PEG layer in a drug carrier increases hydrophilic repulsion, inhibits membrane fusion and serum opsonin interactions, and prolongs the storage and circulation time. It can also change the carrier shape and have an influence on many properties related to the content release of the carrier. In this paper, we focus on the physicochemical effects of PEGylation in the lipid bilayer. We introduce laurdanC as a fluorophore for shape recognition and phase transition detection. Together with laurdanC, cryogenic transmission electron microscopy, differential scanning calorimetry, molecular dynamics simulations, and small-angle X-ray scattering/wide-angle X-ray scattering, we acquire information of the particle/bilayer morphology and phase behavior in systems containing 1,2-dipalmitoyl- sn-glycero-3-phosphocholine:1,2-distearoyl- sn-glycero-3-phosphoethanolamine-PEG(2000) with different fractions. We find that PEGylation leads to two important and potentially usable features of the system. (1) Spherical vesicles present a window of elevated chain-melting temperatures and (2) lipid packing shape-controlled liposome-to-bicelle transition. The first finding is significant for targets requiring multiple release sequences and the second enables tuning the release by composition and the PEG polymer length. Besides drug delivery systems, the findings can be used in other smart soft materials with trigger-polymers as well.

2.
Langmuir ; 32(18): 4554-63, 2016 05 10.
Article in English | MEDLINE | ID: mdl-27089512

ABSTRACT

In light-activated liposomal drug delivery systems (DDSs), the light sensitivity can be obtained by a photothermal agent that converts light energy into heat. Excess heat increases the drug permeability of the lipid bilayer, and drug is released as a result. In this work, two near-IR responsive photothermal agents in a model drug delivery system are studied: either gold nanorods (GNRs) encapsulated inside the liposomes or indocyanine green (ICG) embedded into the lipid bilayer. The liposome system is exposed to light, and the heating effect is studied with fluorescent thermometers: laurdan and CdSe quantum dots (QDs). Both photothermal agents are shown to convert light into heat in an extent to cause a phase transition in the surrounding lipid bilayer. This phase transition is also proven with laurdan generalized polarization (GP). In addition to the heating results, we show that the model drug (calcein) is released from the liposomal cavity with both photothermal agents when the light power is sufficient to cause a phase transition in the lipid bilayer.


Subject(s)
Drug Liberation , Gold/chemistry , Indocyanine Green/chemistry , Light , Lipid Bilayers/chemistry , Nanotubes/chemistry , Phase Transition , Temperature , Capsules , Liposomes , Safety
SELECTION OF CITATIONS
SEARCH DETAIL
...