Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Aging ; 5: 1356954, 2024.
Article in English | MEDLINE | ID: mdl-38523671

ABSTRACT

Exercise has been shown to improve physical function, mitigate aspects of chronic disease and to potentially alter the trajectory of age-related onset of frailty and sarcopenia. Reliable and valid preclinical models are necessary to elucidate the underlying mechanisms at the intersection of age, exercise, and functional decline. The purpose of this study was to compare, head to head, the effects of two common pre-clinical models of endurance exercise: high intensity interval training (HIIT) and voluntary wheel running (VWR). The hypothesis was that a prescribed and regimented exercise program, HIIT, would prove to be a superior training method to unregulated voluntary exercise, VWR. To investigate this hypothesis, we evaluated adult (n = 24, designated 10 m, aged 6 months at the beginning of the study, 10 months at its completion) and older adult (n = 18, designated 26 m, aging from 22 months to 26 months over the course of the study) C57BL/6 male mice. These mice were randomly assigned (with selection criteria) to a 13-week program of voluntary wheel running (VWR), high intensity interval training (HIIT), or sedentary control (SED). The functional aptitude of each mouse was determined pre- and post-training using our composite CFAB (comprehensive functional assessment battery) scoring system consisting of voluntary wheel running (volitional exercise and activity rate), treadmill (endurance), rotarod (overall motor function), grip meter (forelimb strength), and inverted cling (whole body strength/endurance). To measure sarcopenia, we tracked body mass, body composition (with EchoMRI), plantar flexor torque (in 10 m), and measured muscle wet mass post-training. Overall, adult CFAB scores decreased while body mass and percent body fat increased as they matured; however, exercise significantly mitigated the changes (p < 0.05) compared to SED. Older adults demonstrated preservation of function (CFAB) and reduced body fat (p < 0.05) compared to SED. To conclude, both types of exercise maintained physical function equally in older mice.

2.
J Ageing Longev ; 3(2): 159-178, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37876943

ABSTRACT

One inevitable consequence of aging is the gradual deterioration of physical function and exercise capacity, driven in part by the adverse effect of age on muscle tissue. We hypothesized that relationships exist between age-related differentially expressed genes (DEGs) in skeletal muscle and age-associated declines in physical function and exercise capacity. Previously, male C57BL/6mice (6m, months old, 24m, and 28m) were tested for physical function using a composite scoring system (comprehensive functional assessment battery, CFAB) comprised of five well-validated tests of physical function. In this study, total RNA was isolated from tibialis anterior samples (n = 8) randomly selected from each age group in the parent study. Using Next Generation Sequencing RNAseq to determine DEGs during aging (6m vs. 28m, and 6m vs. 24m), we found a greater than five-fold increase in DEGs in 28m compared to the 24m. Furthermore, regression of the normalized expression of each DEG with the CFAB score of the corresponding mouse revealed many more DEGs strongly associated (R ≥ |0.70|) with functional status in the older mice. Gene ontology results indicate highly enriched axon guidance and acetyl choline receptor gene sets, suggesting that denervation/reinnervation flux might potentially play a critical role in functional decline. We conclude that specific age-related DEG patterns are associated with declines in physical function, and the data suggest accelerated aging occurring between 24 and 28 months.

3.
Anal Methods ; 5(11): 2704-2711, 2013.
Article in English | MEDLINE | ID: mdl-23795210

ABSTRACT

Methods to determine neurochemical concentrations in small samples of tissue are needed to map interactions among neurotransmitters. In particular, correlating physiological measurements of neurotransmitter release and the tissue content in a small region would be valuable. HPLC is the standard method for tissue content analysis but it requires microliter samples and the detector often varies by the class of compound being quantified; thus detecting molecules from different classes can be difficult. In this paper, we develop capillary electrophoresis with fast-scan cyclic voltammetry detection (CE-FSCV) for analysis of dopamine, serotonin, and adenosine content in tissue punches from rat brain slices. Using field-amplified sample stacking, the limit of detection was 5 nM for dopamine, 10 nM for serotonin, and 50 nM for adenosine. Neurotransmitters could be measured from a tissue punch as small as 7 µg (7 nL) of tissue, three orders of magnitude smaller than a typical HPLC sample. Tissue content analysis of punches in successive slices through the striatum revealed higher dopamine but lower adenosine content in the anterior striatum. Stimulated dopamine release was measured in a brain slice, then a tissue punch collected from the recording region. Dopamine content and release had a correlation coefficient of 0.71, which indicates much of the variance in stimulated release is due to variance in tissue content. CE-FSCV should facilitate measurements of tissue content in nanoliter samples, leading to a better understanding of how diseases or drugs affect dopamine, serotonin, and adenosine content.

4.
Purinergic Signal ; 9(2): 167-74, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23192278

ABSTRACT

Adenosine plays an important role in neuromodulation and neuroprotection. Recent identification of transient changes in adenosine concentration suggests adenosine may have a rapid modulatory role; however, the extent of these changes throughout the brain is not well understood. In this report, transient changes in adenosine evoked by one second, 60 Hz electrical stimulation trains were compared in the caudate-putamen, nucleus accumbens, hippocampus, and cortex. The concentration of evoked adenosine varies between brain regions, but there is less variation in the duration of signaling. The highest concentration of adenosine was evoked in the dorsal caudate-putamen (0.34 ± 0.08 µM), while the lowest concentration was in the secondary motor cortex (0.06 ± 0.02 µM). In all brain regions, adenosine release was activity-dependent. In the nucleus accumbens, hippocampus, and prefrontal cortex, this release was partly due to extracellular ATP breakdown. However, in the caudate-putamen, release was not due to ATP metabolism but was ionotropic glutamate receptor-dependent. The results demonstrate that transient, activity-dependent adenosine can be evoked in many brain regions but that the mechanism of formation and release varies by region.


Subject(s)
Adenosine/metabolism , Brain/metabolism , Animals , Electric Stimulation , Male , Microelectrodes , Rats , Rats, Sprague-Dawley
5.
ACS Chem Neurosci ; 1(12): 775-787, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-21218131

ABSTRACT

Adenosine is an important neuromodulator in the brain. Traditionally, adenosine is thought to arise in the extracellular space by either an extracellular mechanism, where it is formed outside the cell by the breakdown of released ATP, or an intracellular mechanism, where adenosine made inside the cell is transported out. Recently, a proposed third mechanism of activity dependent adenosine release has also been proposed. Here, we used fast-scan cyclic voltammetry to compare the time course and mechanism of adenosine formation evoked by either low- or high-frequency stimulations in striatal rat brain slices. Low-frequency stimulations (5 pulses at 10 Hz) resulted in an average adenosine efflux of 0.22 ± 0.02 µM, while high-frequency stimulations (5 pulses, 60 Hz) evoked 0.36 ± 0.04 µM. Blocking intracellular formation by inhibiting adenosine transporters with S-(4-nitrobenzyl)-6-thioinosine (NBTI) or propentofylline did not decrease release for either frequency, indicating that the release was not due to the intracellular mechanism. Blocking extracellular formation with ARL-67156 reduced low-frequency release about 60%, but did not affect high-frequency release. Both low- and high-frequency stimulated release were almost completely blocked by removal of calcium, indicating activity dependence. Reducing dopamine efflux did not affect adenosine release but inhibiting ionotropic glutamate receptors did, indicating that adenosine release is dependent on downstream effects of glutamate. Therefore, adenosine release after short, high-frequency physiological stimulations is independent of transporter activity or ATP metabolism, and may be due to direct release of adenosine after glutamate receptor activation.

SELECTION OF CITATIONS
SEARCH DETAIL
...