Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Eur J Pharm Biopharm ; 180: 161-169, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36122786

ABSTRACT

Many active pharmaceutical ingredients (API) in development suffer from low aqueous solubilities. Instead of the crystal form, the amorphous state can be used to improve the API's apparent solubility. However, the amorphous state has a higher Gibb's free energy and is inherently unstable and tends to transform back to the more stable crystal form. In co-amorphous mixtures, phase separation needs to occur before there can be crystallization. The aim of this study was to devise a method to study amorphous-amorphous phase separation with high resolution imaging Fourier transform infrared (FTIR) spectroscopy with seven 1:1 M ratio API-API binary mixtures being examined. The binary mixtures were amorphized by melt-quenching and stored above their glass transition temperature (Tg) to monitor their phase separation. Thermodynamic properties (crystallization tendency, melting point (Tm) and Tg) of these mixtures were measured with differential scanning calorimetry (DSC) to verify the amorphization method and to assess the optimal storage temperature. The phase separation was examined with FTIR imaging in the transmission mode. Furthermore, measurements with two pure APIs were performed to ensure that the alterations occurring in the spectra were caused by phase separation not storage stress. In addition, the reproducibility of the imaging FTIR spectrometer was verified. The spectra were analyzed with principal component analysis (PCA) and a characteristic peak comparison method. Scatter-plots were produced from the amount of phase separated pixels in the measurement area as a way of visualizing the progress of phase separation. The results indicated that imaging with FTIR spectroscopy can produce reproducible results and the progress of phase separation can be detected as either a sigmoidal or as a start-to-finish linear pattern depending on the substances.


Subject(s)
Spectroscopy, Fourier Transform Infrared , Spectroscopy, Fourier Transform Infrared/methods , Reproducibility of Results , Calorimetry, Differential Scanning , Solubility , Transition Temperature , Drug Stability
2.
Int J Pharm ; 606: 120902, 2021 Sep 05.
Article in English | MEDLINE | ID: mdl-34293468

ABSTRACT

Freeze drying is known to be able to produce an amorphous product, but this approach has been mostly used with water-based media. With APIs which are virtually water insoluble, a more appropriate freeze-drying medium would be an organic solvent. Little is known about this approach in terms of forming a stable freeze-dried amorphous product stabilized by small molecule excipient out of organic solvents. In the present study, freeze-drying of APIs from DMSO solutions was used to produce stable solid dispersions from binary mixtures of APIs containing at least one poorly water soluble or practically water-insoluble API. The developed freeze-drying method produced amorphous binary solid dispersions which remained amorphous for at least two days while the 13 best binary dispersions remained stable at room temperature for the entire study period of 127 days. Average residual DMSO levels in dried dispersions were 3.5% ± 1.6%. The developed method proved feasible in producing relatively stable amorphous solid dispersions from practically water insoluble drug compounds which could subsequently be used in further research purposes.


Subject(s)
Desiccation , Dimethyl Sulfoxide , Drug Compounding , Drug Stability , Freeze Drying , Solubility
3.
Eur J Pharm Biopharm ; 155: 49-54, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32795500

ABSTRACT

Many new active pharmaceutical ingredients (API) undergoing development have low permeabilities or low aqueous solubilities. However, the amorphous state is usually more soluble than its crystalline counterpart. The amorphous state has a higher Gibb's free energy, which can improve the apparent solubility but decrease the stability since the amorphous state tends to transform to the more stable crystalline form. Before recrystallization, a co-amorphous binary mixture's ingredients have to undergo a phase separation. The aim of this study was to obtain a better understanding of the amorphous-amorphous phase separation in co-amorphous binary mixtures and test the suitability of imaging Raman spectroscopy for detecting this phenomenon. To study the phase separation, we prepared three different 50:50 mass ratio binary mixtures of APIs: paracetamol-terfenadine, (PAR-TRF), paracetamol-indomethacin (PAR-IMC) and terfenadine-indomethacin (TRF-IMC). The binary mixtures were amorphized with melt-quenching and stored above their glass transition temperature (Tg) to monitor their phase separation. Thermal degradation was determined with a high performance liquid chromatography (HPLC) method to ensure that melt-quenching did not cause any thermal degradation of the molecules. Thermodynamic attributes (crystallization tendency, melting point (Tm) and Tg) were measured with differential scanning calorimetry (DSC) to ensure that the co-amorphous systems transformed to the amorphous state and remained amorphous after cooling and reheating. Phase separation was studied from the surface and cross-section (CS) with Raman imaging to examine if it occurred more on the surface than in the bulk. The Raman spectra were analyzed with principal component analysis (PCA) and Contour plots were produced from the PCA-score values to visualize concentration differences in the mixtures. The results showed that API vs API concentrations increased as a function of time in both surface and CS images before crystallization. This suggests that Raman imaging is a suitable technique to detect the phase separation phenomena in small molecule co-amorphous binary mixtures.


Subject(s)
Chemistry, Pharmaceutical/methods , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/chemistry , Spectrum Analysis, Raman/methods
4.
Eur J Pharm Biopharm ; 150: 43-49, 2020 May.
Article in English | MEDLINE | ID: mdl-32151730

ABSTRACT

Amorphicity is one possible way to increase the solubility of poorly water soluble drugs. However, amorphous solids are thermodynamically unstable and tend to recrystallize with material-specific kinetics. Crystallization is not the prime phenomenon in the whole process, although it is the easiest to measure. The primary phenomenon prior to the crystallization of glass is phase separation, the detection of which is very rarely reported among small molecular compounds. In the present study, a scanning electron microscope with energy dispersive X-ray spectrometer (SEM-EDS) was used to detect very early stage amorphous-amorphous phase separation in co-amorphous drug mixtures. Miscibility was calculated for five studied mixtures based on the Flory-Huggins method and four immiscible pairs and one partial miscible pair were selected for the laboratory experiments. Co-amorphous samples (n = 3) were prepared by melt-quench method and stored at the elevated temperature to induce the separation of amorphous phases. Each sample was stored at the same relative percentage temperature between glass transition temperature Tg and melting temperature Tm. Immediately after the sample preparation, the full amorphousness was verified with polarizing light microscopy. Before SEM-EDS analysis, the samples were fractured into two pieces and measurements were done from cross-section (from the bulk sample). All five pairs phase separated during two days of storage at the elevated temperature. The study proved that SEM-EDS was able to detect a very small phase separated regions in the amorphous sample, as amorphous-amorphous phase separation was detected in four out of five pairs. However, the surface roughness could affect the analysis and give a false indication of phase separation. SEM-EDS also supported calculation results, since every studied pair showed phase separation during study, as was predicted on the grounds of Flory-Huggins miscibility calculation.


Subject(s)
Microscopy, Electron, Scanning , Pharmaceutical Preparations/chemistry , Spectrometry, X-Ray Emission , Crystallization , Models, Chemical , Solubility , Transition Temperature , Vitrification
5.
Expert Opin Drug Deliv ; 14(4): 551-569, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27267873

ABSTRACT

INTRODUCTION: For almost two decades there has been intense debate about whether the amorphous solid state form could resolve the solubility problems and subsequent bioavailability issues of many small molecule drugs. Since the amorphous form is a high energy and unstable state of solid matter, any material in that form requires stabilization. Areas covered: This review examines the technologies being exploited to stabilize the amorphous state in co-amorphous formulations. The review emphasizes the importance of the appropriate selection criteria of stabilizing excipient and focuses on the mechanisms of stabilization. Expert opinion: An extensive literature review has revealed that the current research seeking to achieve stabilization of an amorphous form tends to be conducted on a case-by-case basis. This kind of approach is very inefficient since it can rarely be transferred to other cases. The greatest weakness in the selection of stabilizing excipient for co-amorphous formulations is that modern computational tools have rarely been utilized as a predictive tool in the selection of the excipient. It is evident that more research needs to be done to study larger datasets with modern in silico tools, chemometrics and advanced statistical tools to achieve a more predictive, and systematic approach for the screening of stabilizing excipients to be incorporated into co-amorphous formulations.


Subject(s)
Chemistry, Pharmaceutical/methods , Excipients/chemistry , Biological Availability , Drug Stability , Solubility
6.
Mol Pharm ; 11(7): 2271-9, 2014 Jul 07.
Article in English | MEDLINE | ID: mdl-24824610

ABSTRACT

Combinatorial chemistry has enabled the production of very potent drugs that might otherwise suffer from poor solubility and low oral bioavailability. One approach to increase solubility is to make the drug amorphous, which leads to problems associated with drug stability. To improve stability, one option is to molecularly disperse the drug in a matrix. However, the primary reason for the failed stabilization with this approach is phase separation, which has been carefully studied in polymeric systems. Nevertheless, the amorphous-amorphous phase separation in coamorphous small molecule mixtures has not yet been reported. The goal of the present study was to experimentally detect the amorphous-amorphous phase separation between two small molecules. A modified in silico method for predicting miscibility by the Flory-Huggins interaction parameter is presented, where conformational variations of the studied molecules were taken into account. A series of drug-drug mixtures, with different mixture ratios, were analyzed by conventional differential scanning calorimetry (DSC(conv)) to detect possible amorphous-amorphous phase separations. The phase separation of coamorphous drug-drug mixtures was also monitored by temperature modulated DSC (MDSC) and Fourier transform infrared (FT-IR) imaging at temperatures above Tg for prolonged time periods. Amorphous-amorphous phase separation was not detected with DSC(conv), probably due to the slow kinetics of phase separation. However, the melting of the separated and subsequently crystallized phases was detected by MDSC. Furthermore, FT-IR imaging was able to detect the separation of the two amorphous phases, which demonstrates the ability of this method to detect small molecule phase separations.


Subject(s)
Pharmaceutical Preparations/chemistry , Calorimetry, Differential Scanning/methods , Computer Simulation , Crystallization/methods , Drug Stability , Kinetics , Molecular Conformation , Polymers/chemistry , Solubility , Spectroscopy, Fourier Transform Infrared/methods , Temperature
7.
Mol Pharm ; 9(10): 2844-55, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22867030

ABSTRACT

The applicability of the computational docking approach was investigated to create a novel method for quick additive screening to inhibit the crystallization taking place in amorphous drugs. Surface energy and attachment energy were utilized to recognize the morphologically most important crystal faces. The surfaces (100), (001), and (010) were identified as target faces, and the estimated free energies of binding of additives on these surfaces were computationally determined. The molecule of the crystallizing compound was included in the group of the modeled additives as the reference and for the validation of the approach. Additives having a lower estimated free energy of binding than the reference molecule itself were considered as potential crystallization inhibitors. Salicylamide, salicylic acid, and sulfanilamide with computationally prescreened additives were melt-quenched, and the nucleation and crystal growth rates were subsequently monitored by polarized light microscopy. As a result, computationally screened additives decelerated the nucleation and crystal growth rates of the studied drugs while the pure drugs crystallized too fast to be measured. The use of a computational approach enabled fast and cost-effective additive selection to retard nucleation and crystal growth, thus facilitating the production of amorphous binary small molecular compounds with stabilized disordered structures.


Subject(s)
Molecular Dynamics Simulation , Pharmaceutical Preparations/chemistry , Crystallization , Glass/chemistry , Models, Molecular , Polymers/chemistry , Salicylamides/chemistry , Salicylic Acid/chemistry , Sulfanilamide , Sulfanilamides/chemistry , Surface Properties , Thermodynamics , Transition Temperature
8.
Mol Pharm ; 7(3): 795-804, 2010 Jun 07.
Article in English | MEDLINE | ID: mdl-20361760

ABSTRACT

The Flory-Huggins interaction parameter has been shown to be useful in predicting the thermodynamic miscibility of a polymer and a small molecule in a binary mixture. In the present paper, this concept was extended and evaluated to determine whether or not the Flory-Huggins interaction parameter can be applied to small molecule binary mixtures and if this parameter can predict the phase stability of such amorphous binary mixtures. This study was based on the assumption that a thermodynamically miscible binary system is stable and cannot crystallize, and that phase separation is essential before the individual components can crystallize. The stabilization of a binary system is thought to derive from molecular interactions between components in a solid dispersion, which are characterized by the Flory-Huggins interaction parameter. Based on DSC experiments, drug molecules (39) in the present study were classified into three different categories according to their crystallization tendency; i.e., highly crystallizing, moderately crystallizing and noncrystallizing compounds. The Flory-Huggins interaction parameter was systematically calculated for each drug pair. The validity of this approach was empirically verified by hot-stage polarized light microscopy. If both compounds in the pair belonged to the category of highly crystallizing compound, the Flory-Huggins interaction predicted an amorphous or crystalline phase with approximately 88% (23 out of 26) confidence. If one or both compounds of the pair were either moderately crystallizing or noncrystallizing compounds, the binary mixture remained in the amorphous phase during the cooling phase regardless of the interaction parameter. The Flory-Huggins interaction parameter was found to be a reasonably good indicator for predicting the phase stability of small molecule binary mixtures. The method described can enable fast screening of the potential stabilizers needed to produce a stable amorphous binary mixture.


Subject(s)
Computer Simulation , Excipients/chemistry , Polymers/chemistry , Crystallization , Drug Stability , Microscopy , Models, Molecular , Solubility , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...