Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Redox Biol ; 48: 102178, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34773835

ABSTRACT

Ischemic cerebral stroke is one of the leading causes of death and disability in humans. However, molecular processes underlying the development of this pathology remain poorly understood. There are major gaps in our understanding of metabolic changes that occur in the brain tissue during the early stages of ischemia and reperfusion. In particular, it is generally accepted that both ischemia (I) and reperfusion (R) generate reactive oxygen species (ROS) that cause oxidative stress which is one of the main drivers of the pathology, although ROS generation during I/R was never demonstrated in vivo due to the lack of suitable methods. In the present study, we record for the first time the dynamics of intracellular pH and H2O2 during I/R in cultured neurons and during experimental stroke in rats using the latest generation of genetically encoded biosensors SypHer3s and HyPer7. We detect a buildup of powerful acidosis in the brain tissue that overlaps with the ischemic core from the first seconds of pathogenesis. At the same time, no significant H2O2 generation was found in the acute phase of ischemia/reperfusion. HyPer7 oxidation in the brain was detected only 24 h later. Comparison of in vivo experiments with studies on cultured neurons under I/R demonstrates that the dynamics of metabolic processes in these models significantly differ, suggesting that a cell culture is a poor predictor of metabolic events in vivo.

2.
Antioxidants (Basel) ; 10(5)2021 May 06.
Article in English | MEDLINE | ID: mdl-34066375

ABSTRACT

Fluorescent protein-based reporters used to measure intracellular H2O2 were developed to overcome the limitations of small permeable dyes. The two major families of genetically encoded redox reporters are the reduction-oxidation sensitive green fluorescent protein (roGFP)-based proteins fused to peroxiredoxins and HyPer and derivatives. We have used the most sensitive probes of each family, roGFP2-Tpx1.C169S and HyPer7, to monitor steady-state and fluctuating levels of peroxides in fission yeast. While both are able to monitor the nanomolar fluctuations of intracellular H2O2, the former is two-five times more sensitive than HyPer7, and roGFP2-Tpx1.C169S is partially oxidized in the cytosol of wild-type cells while HyPer7 is fully reduced. We have successfully expressed HyPer7 in the mitochondrial matrix, and it is ~40% oxidized, suggesting higher steady-state levels of peroxides, in the low micromolar range, than in the cytosol. Cytosolic HyPer7 can detect negligible H2O2 in the cytosol from mitochondrial origin unless the main H2O2 scavenger, the cytosolic peroxiredoxin Tpx1, is absent, while mitochondrial HyPer7 is oxidized to the same extent in wild-type and ∆tpx1 cells. We conclude that there is a bidirectional flux of H2O2 across the matrix and the cytosol, but Tpx1 rapidly and efficiently scavenges mitochondrial-generated peroxides and stops their steady-state cytosolic levels rising.

3.
Commun Biol ; 3(1): 536, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32994473

ABSTRACT

Although a physiological role for redox signaling is now clearly established, the processes sensitive to redox signaling remains to be identified. Ratiometric probes selective for H2O2 have revealed its complex spatiotemporal dynamics during neural development and adult regeneration and perturbations of H2O2 levels disturb cell plasticity and morphogenesis. Here we ask whether endogenous H2O2 could participate in the patterning of the embryo. We find that perturbations of endogenous H2O2 levels impact on the distribution of the Engrailed homeoprotein, a strong determinant of midbrain patterning. Engrailed 2 is secreted from cells with high H2O2 levels and taken up by cells with low H2O2 levels where it leads to increased H2O2 production, steering the directional spread of the Engrailed gradient. These results illustrate the interplay between protein signaling pathways and metabolic processes during morphogenetic events.


Subject(s)
Homeodomain Proteins/physiology , Hydrogen Peroxide/metabolism , Nerve Tissue Proteins/physiology , Paracrine Communication/physiology , Superior Colliculi/embryology , Zebrafish Proteins/physiology , Zebrafish/embryology , Animals , Oxidation-Reduction , Superior Colliculi/growth & development , Zebrafish/growth & development
4.
Cell Metab ; 31(3): 642-653.e6, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32130885

ABSTRACT

Hydrogen peroxide (H2O2) is a key redox intermediate generated within cells. Existing probes for H2O2 have not solved the problem of detection of the ultra-low concentrations of the oxidant: these reporters are not sensitive enough, or pH-dependent, or insufficiently bright, or not functional in mammalian cells, or have poor dynamic range. Here we present HyPer7, the first bright, pH-stable, ultrafast, and ultrasensitive ratiometric H2O2 probe. HyPer7 is fully functional in mammalian cells and in other higher eukaryotes. The probe consists of a circularly permuted GFP integrated into the ultrasensitive OxyR domain from Neisseria meningitidis. Using HyPer7, we were able to uncover the details of H2O2 diffusion from the mitochondrial matrix, to find a functional output of H2O2 gradients in polarized cells, and to prove the existence of H2O2 gradients in wounded tissue in vivo. Overall, HyPer7 is a probe of choice for real-time H2O2 imaging in various biological contexts.


Subject(s)
Cell Movement , Hydrogen Peroxide/metabolism , Mitochondria/metabolism , Oxidants/metabolism , Animals , Biological Transport , Cell Surface Extensions/metabolism , Electron Transport Complex I/metabolism , HeLa Cells , Humans , Imaging, Three-Dimensional , Larva/metabolism , Mitochondrial Membranes/metabolism , Zebrafish
5.
Amino Acids ; 43(5): 2015-25, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22451276

ABSTRACT

This study presents a design of a highly potent and competitive inhibitory peptide for 3-hydroxy-3-methylglutaryl CoA reductase (HMGR). HMGR is the major regulatory enzyme of cholesterol biosynthesis and the target enzyme of many investigations aimed at lowering the rate of cholesterol biosynthesis. In previous studies, the two hypocholesterolemic peptides (LPYP and IAVPGEVA) were isolated and identified from soy protein. Based on these peptide sequences, a number of peptides were designed previously by using the correlation between the conformational flexibility and bioactivity. The design method that was applied in previous studies was slightly modified for the purpose of the current research and 12 new peptides were designed and synthesized. Among all peptides, SFGYVAE showed the highest ability to inhibit HMGR. A kinetic analysis revealed that this peptide is a competitive inhibitor of HMG-CoA with an equilibrium constant of inhibitor binding (K (i)) of 12 ± 0.4 nM. This is an overall 14,500-fold increase in inhibitory activity compared to the first isolated LPYP peptide from soybeans. Conformational data support a conformation of the designed peptides close to the bioactive conformation of the previously synthesized active peptides.


Subject(s)
Anticholesteremic Agents/chemical synthesis , Hydroxymethylglutaryl CoA Reductases/chemistry , Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemical synthesis , Peptides/chemical synthesis , Amino Acid Sequence , Binding, Competitive , Circular Dichroism , Drug Design , Humans , Kinetics , Models, Molecular , Molecular Conformation , Molecular Sequence Data , Solid-Phase Synthesis Techniques , Solutions , Soybean Proteins/chemistry , Structure-Activity Relationship
6.
Bioorg Med Chem ; 18(12): 4300-9, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20494585

ABSTRACT

This study presents a simple method to design an active peptide based on a description of the structural preferences of peptide via its peptide fragments. In a previous design, while searching for lead peptide candidates, the efficacy of a design approach that was based on the use of a cyclic peptide as a model of linear analog was demonstrated. Analysis of the conformational behavior of the peptide models showed that an analogical approach could be applied in order to assess the conformational space that was occupied by a peptide by using peptide fragments. In order to assess the proposed method, a design of a competitive inhibitor for HMG-CoA reductase (HMGR) was performed. Two starting points were used in the design: (1) determined recognized residues and (2) the structural preference of a peptide, such as a beta-turn conformation in the present design. Two sets of peptides were developed based on the different location of a beta-turn structure relative to a recognized residue. Set 1 contains peptides in which a recognized residue is included in turn conformation. In Set 2, the turn structure is located distantly from the recognized residues. The design parameter 'V' that was applied in previous studies was slightly modified for the purpose of the current research. The 17 previously and 8 newly designed peptides were estimated by this parameter. In each set, one sequence was selected as a lead peptide candidate for each set: GF(4-fluoro)PEGG for Set 1 and DFGYVAE for Set 2. The inhibitory activities improved in each set. The IC(50) for the GF(4-fluoro)PEGG peptide was found to be 0.75 microM, while the linear DFGYVAE peptide (IC(50)=0.16 microM) showed a 3000-fold increase in inhibitory activity compared to the first isolated LPYP peptide (IC(50)=484 microM) from soybeans. The comparison of the structure-activity relationship (SAR) data between Set 1 and 2 provided an opportunity to design the peptides in terms of peptide selectivity. A structural analysis of the modeled peptides confirmed the appropriateness of the proposed method for the design of active peptides.


Subject(s)
Hydroxymethylglutaryl CoA Reductases/chemistry , Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemistry , Models, Molecular , Peptides/chemistry , Amino Acid Sequence , Binding, Competitive , Circular Dichroism , Drug Design , Hydroxymethylglutaryl CoA Reductases/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Kinetics , Peptides/pharmacology , Protein Structure, Secondary , Structure-Activity Relationship
7.
J Mol Recognit ; 21(4): 224-32, 2008.
Article in English | MEDLINE | ID: mdl-18446881

ABSTRACT

This study presents an approach that can be used to search for lead peptide candidates, including unconstrained structures in a recognized sequence. This approach was performed using the design of a competitive inhibitor for 3-hydroxy-3-methylglutaryl CoA reductase (HMGR). In a previous design for constrained peptides, a head-to-tail cyclic structure of peptide was used as a model of linear analog in searches for lead peptides with a structure close to an active conformation. Analysis of the conformational space occupied by the peptides suggests that an analogical approach can be applied for finding a lead peptide with an unconstrained structure in a recognized sequence via modeling a cycle using fixed residues of the peptide backbone. Using the space obtained by an analysis of the bioactive conformations of statins, eight cyclic peptides were selected for a peptide library based on the YVAE sequence as a recognized motif. For each cycle, the four models were assessed according to the design criterion ("V" parameter) applied for constrained peptides. Three cyclic peptides (FGYVAE, FPYVAE, and FFYVAE) were selected as lead cycles from the library. The linear FGYVAE peptide (IC(50) = 0.4 microM) showed a 1200-fold increase the inhibitory activity compared to the first isolated LPYP peptide (IC(50) = 484 microM) from soybean. Experimental analysis of the modeled peptide structures confirms the appropriateness of the proposed approach for the modeling of active conformations of peptides.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemistry , Models, Molecular , Peptides/chemistry , Protein Conformation , Circular Dichroism , Drug Design , Peptide Library
8.
J Mol Recognit ; 20(3): 197-203, 2007.
Article in English | MEDLINE | ID: mdl-17486664

ABSTRACT

This study is an attempt to develop a simple search method for lead peptide candidates, which include constrained structures in a recognized sequence, using the design of a competitive inhibitor for HMG-CoA reductase (HMGR). A structure-functional analysis of previously synthesized peptides proposes that a competitive inhibitory peptide can be designed by maintaining bioactive conformation in a recognized sequence. A conformational aspect of the structure-based approach was applied to the peptide design. By analysis of the projections obtained through a principle component analysis (PCA) for short linear and cyclic peptides, a head-to-tail peptide cycle is considered as a model for its linear analogy. It is proposed that activities of the linear peptides based on an identical amino acid sequence, which are obtained from a less flexible peptide cycle, would be relatively higher than those obtained from more flexible cyclic peptides. The design criterion was formulated in terms of a 'V' parameter, reflecting a relative deviation of an individual peptide cycle from an average statistical peptide cycle based on all optimized structures of the cyclic peptides in set. Twelve peptide cycles were selected for the peptide library. Comparing the calculated 'V' parameters, two cyclic peptides (GLPTGG and GFPTGG) were selected as lead cycles from the library. Based on these sequences, six linear peptides obtained by breaking the cycle at different positions were selected as lead peptide candidates. The linear GFPTGG peptide, showing the highest inhibitory activity against HMGR, increases the inhibitory potency nearly tenfold. Kinetic analysis reveals that the GFPTGG peptide is a competitive inhibitor of HMG-CoA with an equilibrium constant of inhibitor binding (K(i)) of 6.4 +/- 0.3 microM. Conformational data support a conformation of the designed peptides close to the bioactive conformation of the previously synthesized active peptides.


Subject(s)
Drug Design , Hydroxymethylglutaryl CoA Reductases/chemistry , Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemistry , Oligopeptides/chemistry , Circular Dichroism , Computational Biology , Humans , Hydroxymethylglutaryl CoA Reductases/genetics , Hydroxymethylglutaryl CoA Reductases/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemical synthesis , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Molecular Conformation , Oligopeptides/chemical synthesis , Oligopeptides/pharmacology , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Structure-Activity Relationship
9.
Biopolymers ; 84(6): 586-94, 2006.
Article in English | MEDLINE | ID: mdl-16886212

ABSTRACT

This study investigates a proposed design of a peptide sequence that is based on a bioactive conformation of statins that act as the competitive inhibitors of HMG-CoA for HMGR. To bridge these heterogeneous organic compounds, a conformational aspect relating to an analysis of the flexibility of the peptide molecules and their occupied volumes was applied to the peptide design. The design criterion was formulated in terms of a proximity parameter (Pr), reflecting the probability of an active peptide conformation to approximate the statin. Through a structure-functional analysis of previously synthesized peptides and statin molecules, nine peptides were selected for the peptide library. Comparing the calculated proximity parameters, four peptides (IAVE, YAVE, IVAE, and YVAE) from the library were selected and synthesized. In vitro assays elucidated the inhibition properties for HMGR that are exhibited by these peptides. Among all peptides, YVAE showed the highest ability to inhibit HMGR. A kinetic analysis revealed that this peptide is a competitive inhibitor of HMG-CoA with an equilibrium constant of inhibitor binding (K(i)) of 15.2 +/- 1.4 microM. The calculated coefficient correlation (R) between log (IC(50)) and the inverse value of proximity parameter (1/Pr) was found to be 0.99, indicating a high degree of correlation and efficacy of the given approach in the peptide sequence design.


Subject(s)
Drug Design , Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemistry , Oligopeptides/chemistry , Amino Acid Sequence , Binding, Competitive , Hydroxymethylglutaryl CoA Reductases/drug effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemical synthesis , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Oligopeptides/chemical synthesis , Oligopeptides/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...