Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 125(15): 3909-3917, 2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33844543

ABSTRACT

We propose a novel method based on template matching for the recognition of liquid water, cubic ice (ice Ic), hexagonal ice (ice Ih), clathrate hydrates, and different interfacial structures in atomistic and coarse-grained simulations of water and ice. The two template matrices represent staggered and eclipsed conformations, which are the building blocks of hexagonal and cubic ice and clathrate crystals. The algorithm is rotationally invariant and highly robust against imperfections in the ice structure, and its sensitivity for recognizing ice-like structures can be tuned for different applications. Unlike most other algorithms, it can discriminate between cubic, hexagonal, clathrate, mixed, and other interfacial ice types and is therefore well suited to study complex systems and heterogeneous ice nucleation.

2.
Nat Commun ; 6: 8049, 2015 Aug 12.
Article in English | MEDLINE | ID: mdl-26264864

ABSTRACT

A long-standing objective in materials research is to effectively heal fabrication defects or to remove pre-existing or environmentally induced damage in materials. Silicon carbide (SiC) is a fascinating wide-band gap semiconductor for high-temperature, high-power and high-frequency applications. Its high corrosion and radiation resistance makes it a key refractory/structural material with great potential for extremely harsh radiation environments. Here we show that the energy transferred to the electron system of SiC by energetic ions via inelastic ionization can effectively anneal pre-existing defects and restore the structural order. The threshold determined for this recovery process reveals that it can be activated by 750 and 850 keV Si and C self-ions, respectively. The results conveyed here can contribute to SiC-based device fabrication by providing a room-temperature approach to repair atomic lattice structures, and to SiC performance prediction as either a functional material for device applications or a structural material for high-radiation environments.

3.
Phys Chem Chem Phys ; 17(35): 22538-42, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26267679

ABSTRACT

Molecular dynamics techniques in combination with the inelastic thermal spike model are used to study the coupled effects of the inelastic energy loss due to 21 MeV Ni ion irradiation with pre-existing defects in SrTiO3. We determine the dependence on pre-existing defect concentration of nanoscale track formation occurring from the synergy between the inelastic energy loss and the pre-existing atomic defects. We show that the size of nanoscale ion tracks can be controlled by the concentration of pre-existing disorder. This work identifies a major gap in fundamental understanding on the role of defects in electronic energy dissipation and electron-lattice coupling.

4.
Sci Rep ; 5: 7726, 2015 Jan 12.
Article in English | MEDLINE | ID: mdl-25578009

ABSTRACT

While the interaction of energetic ions with solids is well known to result in inelastic energy loss to electrons and elastic energy loss to atomic nuclei in the solid, the coupled effects of these energy losses on defect production, nanostructure evolution and phase transformations in ionic and covalently bonded materials are complex and not well understood due to dependencies on electron-electron scattering processes, electron-phonon coupling, localized electronic excitations, diffusivity of charged defects, and solid-state radiolysis. Here we show that a colossal synergy occurs between inelastic energy loss and pre-existing atomic defects created by elastic energy loss in single crystal strontium titanate (SrTiO3), resulting in the formation of nanometer-sized amorphous tracks, but only in the narrow region with pre-existing defects. These defects locally decrease the electronic and atomic thermal conductivities and increase electron-phonon coupling, which locally increase the intensity of the thermal spike for each ion. This work identifies a major gap in understanding on the role of defects in electronic energy dissipation and electron-phonon coupling; it also provides insights for creating novel interfaces and nanostructures to functionalize thin film structures, including tunable electronic, ionic, magnetic and optical properties.

5.
J Colloid Interface Sci ; 304(2): 518-23, 2006 Dec 15.
Article in English | MEDLINE | ID: mdl-17010359

ABSTRACT

The humidity present in ambient atmosphere affects the adhesion of small particles by causing capillary bridge formation between the particle and the surface. Even in moderate relative humidities this, usually attractive, force can have a significant effect on adhesion behaviour of micro and sub-micro particles. We have directly measured the pull-off forces of initially adhered oxide particles on oxide surfaces with atomic force microscope in controlled atmosphere with adjustable humidity. We demonstrate the effect of the surface roughness resulting in two different regions of capillary formation and the particle shape having a strong effect on the humidity dependency of adhesion. The experimental results are explained by theoretical framework.

6.
Nanotechnology ; 17(7): S128-36, 2006 Apr 14.
Article in English | MEDLINE | ID: mdl-21727403

ABSTRACT

For the first time, high quality images of metal nanoclusters which were recorded in the constant height mode of a dynamic scanning force microscope (dynamic SFM) are shown. Surfaces of highly ordered pyrolytic graphite (HOPG) were used as a test substrate since metal nanoclusters with well defined and symmetric shapes can be created by epitaxial growth. We performed imaging of gold clusters with sizes between 5 and 15 nm in both scanning modes, constant Δf mode and constant height mode, and compared the image contrast. We notice that clusters in constant height images appear much sharper, and exhibit more reasonable lateral shapes and sizes in comparison to images recorded in the constant Δf mode. With the help of numerical simulations we show that only a microscopically small part of the tip apex (nanotip) is probably the main contributor for the image contrast formation. In principle, the constant height mode can be used for imaging surfaces of any material, e.g. ionic crystals, as shown for the system Au/NaCl(001).

SELECTION OF CITATIONS
SEARCH DETAIL
...