Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
IUCrJ ; 11(Pt 4): 556-569, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38856178

ABSTRACT

Carbonic anhydrase (CA) was among the first proteins whose X-ray crystal structure was solved to atomic resolution. CA proteins have essentially the same fold and similar active centers that differ in only several amino acids. Primary sulfonamides are well defined, strong and specific binders of CA. However, minor variations in chemical structure can significantly alter their binding properties. Over 1000 sulfonamides have been designed, synthesized and evaluated to understand the correlations between the structure and thermodynamics of their binding to the human CA isozyme family. Compound binding was determined by several binding assays: fluorescence-based thermal shift assay, stopped-flow enzyme activity inhibition assay, isothermal titration calorimetry and competition assay for enzyme expressed on cancer cell surfaces. All assays have advantages and limitations but are necessary for deeper characterization of these protein-ligand interactions. Here, the concept and importance of intrinsic binding thermodynamics is emphasized and the role of structure-thermodynamics correlations for the novel inhibitors of CA IX is discussed - an isozyme that is overexpressed in solid hypoxic tumors, and thus these inhibitors may serve as anticancer drugs. The abundant structural and thermodynamic data are assembled into the Protein-Ligand Binding Database to understand general protein-ligand recognition principles that could be used in drug discovery.


Subject(s)
Carbonic Anhydrases , Isoenzymes , Protein Binding , Sulfonamides , Thermodynamics , Humans , Crystallography, X-Ray , Carbonic Anhydrases/metabolism , Carbonic Anhydrases/chemistry , Isoenzymes/metabolism , Isoenzymes/chemistry , Ligands , Sulfonamides/chemistry , Sulfonamides/pharmacology , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase IX/chemistry , Models, Molecular
2.
Sci Rep ; 12(1): 17644, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36271018

ABSTRACT

Numerous human cancers, especially hypoxic solid tumors, express carbonic anhydrase IX (CAIX), a transmembrane protein with its catalytic domain located in the extracellular space. CAIX acidifies the tumor microenvironment, promotes metastases and invasiveness, and is therefore considered a promising anticancer target. We have designed a series of high affinity and high selectivity fluorescein-labeled compounds targeting CAIX to visualize and quantify CAIX expression in cancer cells. The competitive binding model enabled the determination of common CA inhibitors' dissociation constants for CAIX expressed in exponentially growing cancer cells. All tested sulfonamide compounds bound the proliferating cells with similar affinity as to recombinantly purified CAIX. The probes are applicable for the design of selective drug-like compounds for CAIX and the competition strategy could be applied to other drug targets.


Subject(s)
Carbonic Anhydrases , Neoplasms , Humans , Carbonic Anhydrase IX/genetics , Carbonic Anhydrase IX/metabolism , Fluorescent Dyes , Carbonic Anhydrases/metabolism , Cell Line, Tumor , Antigens, Neoplasm/metabolism , Sulfonamides/pharmacology , Fluoresceins
3.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35455474

ABSTRACT

A series of novel benzenesulfonamide derivatives were synthesized bearing para-N ß,γ-amino acid or para-N ß-amino acid and thiazole moieties and their binding to the human carbonic anhydrase (CA) isozymes determined. These enzymes are involved in various illnesses, such as glaucoma, altitude sickness, epilepsy, obesity, and even cancer. There are numerous compounds that are inhibitors of CA and used as pharmaceuticals. However, most of them bind to most CA isozymes with little selectivity. The design of high affinity and selectivity towards one CA isozyme remains a significant challenge. The beta and gamma amino acid-substituted compound affinities were determined by the fluorescent thermal shift assay and isothermal titration calorimetry for all 12 catalytically active human carbonic anhydrase isozymes, showing the full affinity and selectivity profile. The structures of several compounds were determined by X-ray crystallography, and the binding mode in the active site of CA enzyme was shown.

4.
Int J Mol Sci ; 23(1)2021 Dec 23.
Article in English | MEDLINE | ID: mdl-35008553

ABSTRACT

Among the twelve catalytically active carbonic anhydrase isozymes present in the human body, the CAIX is highly overexpressed in various solid tumors. The enzyme acidifies the tumor microenvironment enabling invasion and metastatic processes. Therefore, many attempts have been made to design chemical compounds that would exhibit high affinity and selective binding to CAIX over the remaining eleven catalytically active CA isozymes to limit undesired side effects. It has been postulated that such drugs may have anticancer properties and could be used in tumor treatment. Here we have designed a series of compounds, methyl 5-sulfamoyl-benzoates, which bear a primary sulfonamide group, a well-known marker of CA inhibitors, and determined their affinities for all twelve CA isozymes. Variations of substituents on the benzenesulfonamide ring led to compound 4b, which exhibited an extremely high observed binding affinity to CAIX; the Kd was 0.12 nM. The intrinsic dissociation constant, where the binding-linked protonation reactions have been subtracted, reached 0.08 pM. The compound also exhibited more than 100-fold selectivity over the remaining CA isozymes. The X-ray crystallographic structure of compound 3b bound to CAIX showed the structural position, while several structures of compounds bound to other CA isozymes showed structural reasons for compound selectivity towards CAIX. Since this series of compounds possess physicochemical properties suitable for drugs, they may be developed for anticancer therapeutic purposes.


Subject(s)
Benzoates/pharmacology , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase Inhibitors/pharmacology , Sulfonamides/pharmacology , Catalytic Domain/drug effects , Crystallography, X-Ray/methods , Humans , Isoenzymes/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Protein Binding/physiology , Structure-Activity Relationship , Thermodynamics , Tumor Microenvironment/drug effects , Benzenesulfonamides
SELECTION OF CITATIONS
SEARCH DETAIL
...