Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
R Soc Open Sci ; 5(6): 180149, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30110468

ABSTRACT

Single-crystal X-ray structures of dimeric quinoxaline aldehyde (QA), quinoxaline dihydrazone (DHQ) and HQNM (Goswami S et al. 2013 Tetrahedron Lett.54, 5075-5077. (doi:10.1016/j.tetlet.2013.07.051); Goswami S et al. 2014 RSC Adv.4, 20 922-20 926. (doi:10.1039/C4RA00594E); Goswami S et al. 2014 New J. Chem.38, 6230-6235. (doi:10.1039/C4NJ01498G)) are reported along with the theoretical study. Among them, QA is not acting as an active probe, but DHQ and HQNM are serving as selective and sensitive probe for the Fe3+ cation and the Ni2+ cation, respectively. DHQ can also detect the Fe3+ in commercial fruit juices (grape and pomegranate).

2.
J Biol Inorg Chem ; 20(2): 323-35, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25698503

ABSTRACT

Modeling of molybdoenzymes began even before the knowledge of the three-dimensional structure of these enzymes. The theoretical and experimental knowledge on these enzymes is vast and newer investigation is regularly pursued to understand the electronic aspect of these proteins using computational means. The present review deals with some unique observation regarding the structure, function and reactivity of some models and native proteins in rationalizing the choice of diverse substrates in seemingly similar enzymes such as Nap (nitrate reductase) and Fdh (formate dehydrogenase) and the dual form of a specific substrate of an enzyme like trimethylamine N-oxide reductase (TAMOR) and providing the electronic reason for the inhibition in the oxypurinol-inhibited xanthine oxidase (XO).


Subject(s)
Cytochrome P-450 Enzyme System/chemistry , Formate Dehydrogenases/chemistry , Molybdenum/chemistry , Nitrate Reductase/chemistry , Xanthine Oxidase/chemistry , Kinetics , Models, Theoretical , Molecular Conformation , Nitric Oxide/chemistry , Protein Conformation , Substrate Specificity
3.
Chem Asian J ; 10(3): 694-700, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25605132

ABSTRACT

A new visible-light-excitable fluorescence ratiometric probe for OCl(-) has been developed based on a triphenylamine-diamiomaleonitrile (TAM) moiety. The structure of the dye was confirmed by single-crystal X-ray analysis. It behaves as a highly selective and sensitive probe for OCl(-) over other analytes with a fast response time (∼100 s). OCl(-) reacts with the probe leading to the formation of the corresponding aldehyde in a mixed-aqueous system. The detection limit of the probe is in the 10(-8) M range. The probe (TAM) also exhibits solvatofluorochromism. Changing the solvent from non-polar to polar, the emission band of TAM largely red-shifted. Moreover, the probe shows an excellent performance in real-life application in detecting OCl(-) in human blood cells. The experimentally observed changes in the structure and electronic properties of the probe after reaction with OCl(-) were studied by DFT and TDDFT computational calculations.


Subject(s)
Amines/chemistry , Erythrocytes/chemistry , Fluorescent Dyes/chemistry , Hypochlorous Acid/chemistry , Crystallography , Humans , Models, Molecular , Molecular Structure
4.
Inorg Chem ; 53(24): 12799-808, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25470763

ABSTRACT

The complex [Ph4P]2[Cu(bdt)2] (1(red)) was synthesized by the reaction of [Ph4P]2[S2MoS2CuCl] with H2bdt (bdt = benzene-1,2-dithiolate) in basic medium. 1(red) is highly susceptible toward dioxygen, affording the one electron oxidized diamagnetic compound [Ph4P][Cu(bdt)2] (1(ox)). The interconversion between these two oxidation states can be switched by addition of O2 or base (Et4NOH = tetraethylammonium hydroxide), as demonstrated by cyclic voltammetry and UV-visible and EPR spectroscopies. Thiomolybdates, in free or complex forms with copper ions, play an important role in the stability of 1(red) during its synthesis, since in its absence, 1(ox) is isolated. Both 1(red) and 1(ox) were structurally characterized by X-ray crystallography. EPR experiments showed that 1(red) is a Cu(II)-sulfur complex and revealed strong covalency on the copper-sulfur bonds. DFT calculations confirmed the spin density delocalization over the four sulfur atoms (76%) and copper (24%) atom, suggesting that 1(red) has a "thiyl radical character". Time dependent DFT calculations identified such ligand to ligand charge transfer transitions. Accordingly, 1(red) is better described by the two isoelectronic structures [Cu(I)(bdt2, 4S(3-,)*)](2-) ↔ [Cu(II)(bdt2, 4S(4-))](2-). On thermodynamic grounds, oxidation of 1(red) (doublet state) leads to 1(ox) singlet state, [Cu(III)(bdt2, 4S(4-))](1-).

5.
Chem Asian J ; 9(12): 3623-32, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25349091

ABSTRACT

A new benzimidazole-spiropyran conjugate chemosensor molecule (BISP) has been synthesized and characterized by (1)H NMR spectroscopy, mass spectrometry (ESI-MS), and elemental analysis. The two isomeric forms (BISP↔BIMC) were shown to be highly selective and sensitive to CN(-) among the ten anions studied in aqueous HEPES buffer, as shown by fluorescence and absorption spectroscopy and even by visual color changes, with a detection limit of 1.7 µM for BIMC. The reaction of CN(-) with BIMC was monitored by (1)H NMR spectroscopy, high-resolution mass spectrometry (HRMS), UV/Vis measurements, and fluorescence spectroscopy in HEPES buffer of pH 7.4. TDDFT calculations were performed in order to correlate the electronic properties of the chemosensor with its cyanide complex. Further, titration against thiophilic metal ions like Au(3+), Cu(2+), Ag(+), and Hg(2+) with [BIMC-CN] in situ showed that it acts as a secondary recognition ensemble toward Au(3+) and Cu(2+) by switch-on fluorescence. In addition, a reversible logic-gate property of BIMC has been demonstrated through a feedback loop in the presence of CN(-) and Au(3+) ions, respectively. Furthermore, the use of BIMC to detect CN(-) in live cells by fluorescence imaging has also been demonstrated. Notably, test strips based on BIMC were fabricated, which could serve as convenient and efficient CN(-) test kits.


Subject(s)
Cyanides/analysis , Fluorescent Dyes/chemistry , Water/chemistry , Fluorescent Dyes/chemical synthesis , Molecular Structure , Spectrometry, Fluorescence
6.
Dalton Trans ; 43(33): 12689-97, 2014 Sep 07.
Article in English | MEDLINE | ID: mdl-25010909

ABSTRACT

A new zinc(ii) complex with a condensed hydroxynaphthyl pyridine (SPHN) as the coordinated ligand has been synthesized for the selective recognition of pyrophosphate (PPi) over other anions including phosphate in a mixed aqueous solution. The fluorescence enhancement of SPHN in association with Zn(2+) ions is quenched in the presence of intracellular pyrophosphate. This phenomenon is utilized in the construction of a logic gate. The binding of SPHN with Zn(2+) and its displacement by PPi have been established by photophysical investigation and supported by the DFT level of studies. The development of blue fluorescence in the {} complex upon binding of zinc with is shown to be useful as a nucleus marker in a cell similar to the commercially available staining compound, DAPI (diamino-2-phenylindole).


Subject(s)
Diphosphates/chemistry , Fluorescent Dyes/chemistry , Indoles/chemistry , Staining and Labeling , HeLa Cells , Humans , Staining and Labeling/methods
7.
Org Lett ; 15(21): 5412-5, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24138076

ABSTRACT

A probe based on 2-(2'-hydroxyphenyl) benzothiazole (HBT) has been synthesized and used for the ratiometric detection of hydrazine. The probe is designed in such a way that the excited state intramolecular proton transfer (ESIPT) of the HBT moiety gets blocked. The chemodosimetric approach of hydrazine to the probe results in the recovery of the ESIPT by removal of a free HBT moiety through subsequent substitution, cyclization, and elimination processes. The probe is successfully demonstrated to enable the detection of hydrazine in live cells.


Subject(s)
Fluorescent Dyes/chemistry , Hydrazines/chemistry , Benzothiazoles/chemical synthesis , Benzothiazoles/chemistry , Cyclization , Molecular Imaging , Molecular Structure , Phenols/chemical synthesis , Phenols/chemistry , Protons , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...