Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 49(10): 2549-2552, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748102

ABSTRACT

The coherent interaction of extremely short light pulses with a resonant medium can result in the formation of population difference gratings. Such gratings have been created by pulses that are π/2 or smaller. This paper demonstrates that a microcavity with Bragg-like mirrors can be formed by colliding two single-cycle attosecond self-induced transparency pulses in the center of a two-level medium. The parameters of this structure can be quickly adjusted by increasing the number of collisions, which showcases the ability to control the dynamic properties of the medium on a sub-cycle time scale by using attosecond pulses.

2.
Opt Lett ; 48(24): 6504-6507, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38099784

ABSTRACT

We theoretically demonstrate the possibility to tune the temporal waveform of unipolar pulses of femtosecond duration emitted from a multilevel resonant medium. This is achieved through the control of the medium response by a properly adjusted sequence of half-cycle unipolar or quasi-unipolar driving pulses and the spatial density profile of resonant centers along the medium layer. We show the production of unipolar optical pulses of varying profiles, like rectangular or triangular ones, from an extended layer of a multilevel medium.

3.
Opt Lett ; 48(17): 4637-4640, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37656574

ABSTRACT

We propose a simple quantum system, namely, a nested quantum-well structure, which is able to generate a train of half-cycle pulses of a few-femtosecond duration when driven by a static electric field. We theoretically investigate the emission of such a structure and its dependence on the parameters of the quantum wells. It is shown that the production of a regular output pulse train with tunable properties and the pulse repetition frequencies of tens of terahertz is possible in certain parameter ranges. We expect the suggested structure can be used as an ultra-compact source of subcycle pulses in the optical range.

4.
Opt Express ; 31(7): 11354-11362, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37155773

ABSTRACT

Second-harmonic generation (SHG) is a second-order nonlinear optical process that is not allowed in media with inversion symmetry. However, due to the broken symmetry at the surface, surface SHG still occurs, but is generally weak. We experimentally investigate the surface SHG in periodic stacks of alternating, subwavelength dielectric layers, which have a large number of surfaces, thus enhancing surface SHG considerably. To this end, multilayer stacks of SiO2/TiO2 were grown by Plasma Enhanced Atomic Layer Deposition (PEALD) on fused silica substrates. With this technique, individual layers of a thickness of less than 2 nm can be fabricated. We experimentally show that under large angles of incidence (> 20 degrees) there is substantial SHG, well beyond the level, which can be observed from simple interfaces. We perform this experiment for samples with different periods and thicknesses of SiO2/TiO2 and our results are in agreement with theoretical calculations.

5.
Opt Lett ; 46(12): 2868-2871, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34129561

ABSTRACT

We study theoretically the temporal transformations of few-cycle pulses upon linear interaction with ultrathin metallic films. We show that under certain conditions on the film thickness and the pulse spectrum, one obtains the temporal differentiation of the pulse shape in transmission and the temporal integration in reflection. In contrast to previous studies, these transformations are obtained for the field of few-cycle pulses itself instead of the slowly varying pulse envelope. These results open up new opportunities for the control of the temporal pulse profile in ultrafast optics.

6.
Sci Rep ; 11(1): 1961, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33479279

ABSTRACT

We study theoretically a possibility of creation and ultrafast control (erasing, spatial frequency multiplication) of population density gratings in a multi-level resonant medium having a resonance transition frequency in the THz range. These gratings are produced by subcycle THz pulses coherently interacting with a nonlinear medium, without any need for pulses to overlap, thereby utilizing an indirect pulse interaction via an induced coherent polarization grating. High values of dipole moments of the transitions in the THz range facilitate low field strength of the needed THz excitation. Our results clearly show this possibility in multi-level resonant media. Our theoretical approach is based on an approximate analytical solution of time-dependent Schrödinger equation (TDSE) using perturbation theory. Remarkably, as we show here, quasi-unipolar subcycle pulses allow more efficient excitation of higher quantum levels, leading to gratings with a stronger modulation depth. Numerical simulations, performed for THz resonances of the [Formula: see text] molecule using Bloch equations for density matrix elements, are in agreement with analytical results in the perturbative regime. In the strong-field non-perturbative regime, the spatial shape of the gratings becomes non-harmonic. A possibility of THz radiation control using such gratings is discussed. The predicted phenomena open novel avenues in THz spectroscopy of molecules with unipolar and quasi-unipolar THz light bursts and allow for better control of ultra-short THz pulses.

7.
Sci Rep ; 11(1): 1147, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33441898

ABSTRACT

Here we consider coherent mode-locking (CML) regimes in single-section cavity lasers, taking place for pulse durations less than atomic population and phase relaxation times, which arise due to coherent Rabi oscillations of the atomic inversion. Typically, CML is introduced for lasers with two sections, the gain and absorber ones. Here we show that, for certain combination of the cavity length and relaxation parameters, a very stable CML in a laser, containing only gain section, may arise. The mode-locking is unconditionally self-starting and appears due to balance of intra-pulse de-excitation and slow interpulse-scale pump-induced relaxation processes. We also discuss the scaling of the system to shorter pulse durations, showing a possibility of mode-locking for few-cycle pulses.

8.
Opt Express ; 28(11): 17020-17034, 2020 May 25.
Article in English | MEDLINE | ID: mdl-32549512

ABSTRACT

The most typical way to optically control population of atomic and molecular systems is to illuminate them with radiation, resonant to the relevant transitions. Here we consider a possibility to control populations with the subcycle and even unipolar pulses, containing less than one oscillation of electric field. Despite the spectrum of such pulses covers several levels at once, we show that it is possible to selectively excite the levels of our choice by varying the driving pulse shape, duration or time delay between consecutive pulses. The pulses which are not unipolar, but have a peak of electric field of one polarity much higher (and shorter) than of the opposite one, are also capable for such control.

9.
Cogn Neurodyn ; 7(6): 449-63, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24427219

ABSTRACT

This research is devoted to possible mechanisms of decision-making in frames of thermodynamic principles. It is also shown that the decision-making system in reply to emotion includes vector component which seems to be often a necessary condition to transfer system from one state to another. The phases of decision-making system can be described as supposed to be nonequilibrium and irreversible to which thermodynamics laws are applied. The mathematical model of a decision choice, proceeding from principles of the nonlinear dynamics considering instability of movement and bifurcation is offered. The thermodynamic component of decision-making process on the basis of vector transfer of energy induced by emotion at the given time is surveyed. It is proposed a three-modular model of decision making based on principles of thermodynamics. Here it is suggested that at entropy impact due to effect of emotion, on the closed system-the human brain,-initially arises chaos, then after fluctuations of possible alternatives which were going on-reactions of brain zones in reply to external influence, an order is forming and there is choice of alternatives, according to primary entrance conditions and a state of the closed system. Entropy calculation of a choice expectation of negative and positive emotion shows judgment possibility of existence of "the law of emotion conservation" in accordance with several experimental data.

SELECTION OF CITATIONS
SEARCH DETAIL
...