Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Genomics ; 56(2): 194-220, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38047313

ABSTRACT

Marked sexual dimorphism is displayed in the onset and progression of pulmonary hypertension (PH). Females more commonly develop pulmonary arterial hypertension, yet females with pulmonary arterial hypertension and other types of PH have better survival than males. Pulmonary microvascular endothelial cells play a crucial role in pulmonary vascular remodeling and increased pulmonary vascular resistance in PH. Given this background, we hypothesized that there are sex differences in the pulmonary microvascular endothelium basally and in response to hypoxia that are independent of the sex hormone environment. Human pulmonary microvascular endothelial cells (HPMECs) from healthy male and female donors, cultured under physiological shear stress, were analyzed using RNA sequencing and label-free quantitative proteomics. Gene set enrichment analysis identified a number of sex-different pathways in both normoxia and hypoxia, including pathways that regulate cell proliferation. In vitro, the rate of proliferation in female HPMECs was lower than in male HPMECs, a finding that supports the omics results. Interestingly, thrombospondin-1, an inhibitor of proliferation, was more highly expressed in female cells than in male cells. These results demonstrate, for the first time, important differences between female and male HPMECs that persist in the absence of sex hormone differences and identify novel pathways for further investigation that may contribute to sexual dimorphism in pulmonary hypertensive diseases.NEW & NOTEWORTHY There is marked sexual dimorphism in the development and progression of pulmonary hypertension. We show differences in RNA and protein expression between female and male human pulmonary microvascular endothelial cells grown under conditions of physiological shear stress, which identify sex-different cellular pathways both in normoxia and hypoxia. Importantly, these differences were detected in the absence of sex hormone differences. The pathways identified may provide novel targets for the development of sex-specific therapies.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Humans , Male , Female , Endothelial Cells/metabolism , Sex Characteristics , Hypertension, Pulmonary/metabolism , Pulmonary Arterial Hypertension/metabolism , Proteomics , Hypoxia/metabolism , Cells, Cultured , Endothelium/metabolism , Gene Expression Profiling , Gonadal Steroid Hormones/metabolism
2.
Hypertension ; 80(11): 2372-2385, 2023 11.
Article in English | MEDLINE | ID: mdl-37851762

ABSTRACT

BACKGROUND: Hypoxic pulmonary hypertension is a difficult disease to manage that is characterized by sustained elevation of pulmonary vascular resistance and pulmonary artery pressure due to vasoconstriction, perivascular inflammation, and vascular remodeling. Consumption of soluble-fiber is associated with lower systemic blood pressure, but little is known about its ability to affect the pulmonary circulation. METHODS: Mice were fed either a low- or high-soluble-fiber diet (0% or 16.9% inulin) and then exposed to hypoxia (FiO2, 0.10) for 21 days to induce pulmonary hypertension. The impact of diet on right ventricular systolic pressure and pulmonary vascular resistance was determined in vivo or in ex vivo isolated lungs, respectively, and correlated with alterations in the composition of the gut microbiome, plasma metabolome, pulmonary inflammatory cell phenotype, and lung proteome. RESULTS: High-soluble-fiber diet increased the abundance of short-chain fatty acid-producing bacteria, with parallel increases in plasma propionate levels, and reduced the abundance of disease-related bacterial genera such as Staphylococcus, Clostridioides, and Streptococcus in hypoxic mice with parallel decreases in plasma levels of p-cresol sulfate. High-soluble-fiber diet decreased hypoxia-induced elevations of right ventricular systolic pressure and pulmonary vascular resistance. These changes were associated with reduced proportions of interstitial macrophages, dendritic cells, and nonclassical monocytes. Whole-lung proteomics revealed proteins and molecular pathways that may explain the effect of soluble-fiber supplementation. CONCLUSIONS: This study demonstrates for the first time that a high-soluble-fiber diet attenuates hypoxia-induced pulmonary vascular remodeling and the development of pulmonary hypertension in a mouse model of hypoxic pulmonary hypertension and highlights diet-derived metabolites that may have an immuno-modulatory role in the lung.


Subject(s)
Hypertension, Pulmonary , Mice , Animals , Hypertension, Pulmonary/prevention & control , Hypertension, Pulmonary/complications , Vascular Remodeling , Lung/metabolism , Pulmonary Circulation/physiology , Hypoxia/metabolism , Pulmonary Artery/metabolism
3.
Am J Respir Cell Mol Biol ; 68(5): 551-565, 2023 05.
Article in English | MEDLINE | ID: mdl-36730645

ABSTRACT

Blood flow produces shear stress that homeostatically regulates the phenotype of pulmonary endothelial cells, exerting antiinflammatory and antithrombotic actions and maintaining normal barrier function. Hypoxia due to diseases, such as chronic obstructive pulmonary disease (COPD), causes vasoconstriction, increased vascular resistance, and pulmonary hypertension. Hypoxia-induced changes in endothelial function play a central role in the development of pulmonary hypertension. However, the interactive effects of hypoxia and shear stress on the pulmonary endothelial phenotype have not been studied. Human pulmonary microvascular endothelial cells were cultured in normoxia or hypoxia while subjected to physiological shear stress or in static conditions. Unbiased proteomics was used to identify hypoxia-induced changes in protein expression. Using publicly available single-cell RNA sequencing datasets, differences in gene expression between the alveolar endothelial cells from COPD and healthy lungs were identified. Sixty proteins were identified whose expression changed in response to hypoxia in conditions of physiological shear stress but not in static conditions. These included proteins that are crucial for endothelial homeostasis (e.g., JAM-A [junctional adhesion molecule A], ERG [ETS transcription factor ERG]) or implicated in pulmonary hypertension (e.g., thrombospondin-1). Fifty-five of these 60 have not been previously implicated in the development of hypoxic lung diseases. mRNA for 5 of the 60 (ERG, MCRIP1 [MAPK regulated corepressor interacting protein 1], EIF4A2 [eukaryotic translation initiation factor 4A2], HSP90AA1 [heat shock protein 90 alpha family class A member 1], and DNAJA1 [DnaJ Hsp40 (heat shock protein family) member A1]) showed similar changes in the alveolar endothelial cells of COPD compared with healthy lungs in females but not in males. These data show that the proteomic responses of the pulmonary microvascular endothelium to hypoxia are significantly altered by shear stress and suggest that these shear-hypoxia interactions are important in the development of hypoxic pulmonary vascular disease.


Subject(s)
Hypertension, Pulmonary , Pulmonary Disease, Chronic Obstructive , Male , Female , Humans , Hypertension, Pulmonary/metabolism , Endothelial Cells/metabolism , Proteomics , Lung/metabolism , Hypoxia/metabolism , Endothelium, Vascular/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Cells, Cultured
4.
Am J Physiol Heart Circ Physiol ; 320(2): H475-H486, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33306446

ABSTRACT

Heart failure (HF) is one of the leading causes of mortality and morbidity in the modern world whose increasing prevalence is associated with "Western" diet and sedentary lifestyles. Of particular concern is the increasing burden of HF with preserved ejection fraction (HFpEF) that involves complex pathophysiology and is difficult to treat. Pressure overload caused by hypertension (HTN) is the predominant driver of cardiac injury, left ventricular hypertrophy, and fibrosis that progresses to diastolic dysfunction and ultimately HFpEF. Although pharmacological control of blood pressure may affect the degree of pressure overload, such therapies are largely ineffective in established HFpEF, and there is a need to modulate the festering inflammatory and fibrotic response to injury to halt and perhaps reverse pathology. An emerging literature indicates potentially important links between the gut microbiota, dietary soluble fiber, and microbiota-derived metabolites that modulate blood pressure and the immune response. In particular, high-fiber diets demonstrate protective properties in systemic hypertension and left-sided cardiac pathology, and this action is closely associated with short-chain fatty acid (SCFA)-producing bacteria. Mechanisms underlying the beneficial action of SCFAs in immunity and the systemic circulation could potentially be applied to the treatment of hypertension and the cardiac damage it causes. In this review, we discuss the potential beneficial effects of SCFAs, with an emphasis on mechanisms that are involved in cardiac responses to pressure overload.


Subject(s)
Blood Pressure , Diet , Fatty Acids, Volatile/metabolism , Heart Failure/metabolism , Animals , Dietary Fiber/metabolism , Heart Failure/microbiology , Humans , Microbiota
5.
Eur J Pharmacol ; 820: 97-105, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29233660

ABSTRACT

Extracellular diadenosine polyphosphates (ApnA) are recently considered as an endogenous signaling compounds with transmitter-like activity which present in numerous tissues, including heart. It has been demonstrated previously that extracellular ApnA cause alteration of the heart functioning via purine receptors in different mammalian species. Nevertheless, principal intracellular pathways which underlie ApnA action in the heart remain unknown. In the present study the role of the P2Y-associated intracellular regulatory pathway in the mediation of diadenosine tetraphosphate (Ap4A) effects in the rat heart has been investigated for the first time. Extracellular Ap4A caused significant decreasing of the ventricular inotropy. Ap4A evoked reduction of the left ventricle contractility in the isolated Langendorff-perfused rat hearts, decreasing of the Ca2+ transients in the enzymatically isolated ventricular cardiomyocytes and induced shortening of action potentials in the ventricle multicellular preparations. The inhibitory effects of Ap4A in the rat heart were significantly attenuated by protein kinase C (PKC) inhibitor chelerythrine but these effects were not affected by NO-synthase inhibitor L-NAME and guanylyl cyclase (sGC) inhibitor ODQ. In addition, substantial attenuation of Ap4A-caused negative inotropy in the left ventricle was produced by nonselective phsophodiesterase (PDE) inhibitor IBMX, while PDE type 2 inhibitor EHNA was ineffective. In conclusion, our results allow suggesting that Ap4A-induced inhibitory effects in the rat heart are mediated by PKC, but not by NO/sGC/PKG-related signaling pathway. In addition, PDE stimulation may contribute to Ap4A-caused inhibition of the rat heart contractility.


Subject(s)
Cardiovascular Agents/pharmacology , Dinucleoside Phosphates/pharmacology , Heart/drug effects , Phosphoric Diester Hydrolases/metabolism , Protein Kinase C/metabolism , 1-Methyl-3-isobutylxanthine/pharmacology , Animals , Benzophenanthridines/pharmacology , Heart/physiology , Intracellular Space/drug effects , Intracellular Space/metabolism , Male , Nitric Oxide/metabolism , Phosphodiesterase Inhibitors/pharmacology , Rats , Rats, Wistar , Signal Transduction/drug effects , Ventricular Function, Left/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...