Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 99(1-1): 012901, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30780361

ABSTRACT

The packing fraction dynamics of a wet granular material submitted to freeze-thaw cycling is investigated experimentally. The dynamics is strongly influenced by the liquid volume fraction ω in the considered range of 0.03<ω<0.32. This range of liquid contents covers different regimes of wetness from the creation of the capillary network until the formation of large clusters and finally close to the saturated case. For the liquid contents ω≳0.15, the pile experiences a decompaction until a particular value of the packing fraction 0.56 corresponding to a random loose packing configuration for monosized spheres. Moreover, the decompaction starts after a cycling number that decreases exponentially with the liquid content. Finally, we show that the packing dynamics can be well modeled on the basis of a Landau potential with an asymmetric double-well structure. The onset of decompaction represents the tendency of the system to stay in a metastable state. After several cycles, the forces induced by the thermal cycling and local stochastic rearrangements of the grains can drive the system to overcome the energy barrier of the cohesive forces.

2.
Sci Rep ; 2: 549, 2012.
Article in English | MEDLINE | ID: mdl-22870378

ABSTRACT

Just a bit of water enables one to turn a pile of dry sand into a spectacular sandcastle. Too much water however will destabilize the material, as is seen in landslides. Here we investigated the stability of wet sand columns to account for the maximum height of sandcastles. We find that the columns become unstable to elastic buckling under their own weight. This allows to account for the maximum height of the sand column; it is found to increase as the 2/3 power of the base radius of the column. Measuring the elastic modulus of the wet sand, we find that the optimum strength is achieved at a very low liquid volume fraction of about 1%. Knowing the modulus we can quantitatively account for the measured sandcastle heights.

SELECTION OF CITATIONS
SEARCH DETAIL
...