Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 17211, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060427

ABSTRACT

This work experimentally addresses damage calibration of an unmanned aerial vehicle in operational condition. A wide range of damage level and types are simulated and controlled by an electric motor via pulse width modulation in this regard. The measurement is carried out via established protocols of using a piezo-patch on one of the 8 arms, utilising the vibration sensitivity and flexibility of the arms, demonstrating repeatability of such protocol. Subsequently, recurrence analysis on the voltage time series data is performed for detection of damage. Quantifiers of damage extent are then created for the full range of damage conditions, including the extreme case of complete loss of power. Experimental baseline condition for no damage condition is also established in this regard. Both diagonal-line and vertical-line based indicators from recurrence analysis are sensitive to the quantitative estimates of damage levels and a statistical test of significance analysis confirms that it is possible to automate distinguishing the levels of damage. The damage quantifiers proposed in this paper are useful for rapid monitoring of unmanned aerial vehicle operations of connection.

2.
Ann Work Expo Health ; 68(5): 550-555, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38652495

ABSTRACT

OBJECTIVES: This study: (i) quantified the typical noise levels in an Irish neonatal intensive care unit (NICU) and compared the values to recommendations by the American Academy of Paediatrics (AAP) and the European Standards for Care for Newborn Health (EFCNI) and to occupational exposure limit value and exposure action values; and (ii) qualified the perception of noise levels and the sources of noise across the various stakeholders within a typical NICU. METHODS: A noise survey was conducted in an Irish NICU. Observations identified practices and behaviours in the NICU that potentially had an impact on noise levels. Noise levels were compared to occupational exposure limits and AAP and EFCNI standards. A noise perception survey was conducted to identify noise sources and awareness of noise levels in the NICU. Results were analysed using SPSS Statistics to determine statistical significance. RESULTS: Noise levels recorded were consistent with previous similar studies and in all cases, the average noise levels recorded exceeded the 45 dBA as recommended by the AAP and EFCNI. There was a statistically significant difference (P < 0.01) between noise levels recorded on the day shift compared to the night shift. The perception of noise levels reported by nurses versus parents was found to be statistically significant (P = 0.001). 38.3% of all respondents reported having received no information or training with regard to noise in the NICU. There was a statistically significant difference in the perception of who is most likely to be affected by noise in the NICU, with nurses reporting those most likely to be affected by noise were patients, and parents reporting those most likely to be affected were staff (P = 0.003). CONCLUSIONS: This study supports the hypothesis that noise levels within the NICU are of concern and require regular assessment and monitoring. Training and awareness programmes are an important component to ensuring all persons in the NICU recognise their potential impact on noise levels in the NICU and in reducing the risk for patients and staff.


Subject(s)
Intensive Care Units, Neonatal , Noise, Occupational , Occupational Exposure , Humans , Intensive Care Units, Neonatal/statistics & numerical data , Ireland , Noise, Occupational/statistics & numerical data , Noise, Occupational/adverse effects , Occupational Exposure/statistics & numerical data , Infant, Newborn , Noise/adverse effects , Surveys and Questionnaires , Male , Parents/psychology , Female
3.
Sensors (Basel) ; 24(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38475220

ABSTRACT

This study proposes the new condition monitoring concept of using features in the measured rotation, or 'pitch' signal, of a crossing vehicle as an indicator of the presence of foundation scour in a bridge. The concept is explored through two-dimensional vehicle-bridge interaction modelling, with a reduction in stiffness under a pier used to represent the effects of scour. A train consisting of three 10-degree-of-freedom carriages cross the model on a profiled train track, each train varying slightly in terms of mass and velocity. An analysis of the pitch of the train carriages can clearly identify when scour is present. The concept is further tested in a scaled laboratory experiment consisting of a tractor-trailer crossing a four-span simply supported bridge on piers. The foundation support is represented by four springs under each pier, which can be replaced with springs of a reduced stiffness to mimic the effect of scour. The laboratory model also consistently shows a divergence in vehicle pitch between healthy and scoured bridge states.

4.
Bull Earthq Eng ; 22(3): 1309-1357, 2024.
Article in English | MEDLINE | ID: mdl-38419620

ABSTRACT

The present work offers a comprehensive overview of methods related to condition assessment of bridges through Structural Health Monitoring (SHM) procedures, with a particular interest on aspects of seismic assessment. Established techniques pertaining to different levels of the SHM hierarchy, reflecting increasing detail and complexity, are first outlined. A significant portion of this review work is then devoted to the overview of computational intelligence schemes across various aspects of bridge condition assessment, including sensor placement and health tracking. The paper concludes with illustrative examples of two long-span suspension bridges, in which several instrumentation aspects and assessments of seismic response issues are discussed.

5.
Sensors (Basel) ; 24(3)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38339628

ABSTRACT

Operations and maintenance (O&M) of floating offshore wind turbines (FOWTs) require regular inspection activities to predict, detect, and troubleshoot faults at high altitudes and in harsh environments such as strong winds, waves, and tides. Their costs typically account for more than 30% of the lifetime cost due to high labor costs and long downtime. Different inspection methods, including manual inspection, permanent sensors, climbing robots, remotely operated vehicles (ROVs), and unmanned aerial vehicles (UAVs), can be employed to fulfill O&M missions. The UAVs, as an enabling technology, can deal with time and space constraints easily and complete tasks in a cost-effective and efficient manner, which have been widely used in different industries in recent years. This study provides valuable insights into the existing applications of UAVs in FOWT inspection, highlighting their potential to reduce the inspection cost and thereby reduce the cost of energy production. The article introduces the rationale for applying UAVs to FOWT inspection and examines the current technical status, research gaps, and future directions in this field by conducting a comprehensive literature review over the past 10 years. This paper will also include a review of UAVs' applications in other infrastructure inspections, such as onshore wind turbines, bridges, power lines, solar power plants, and offshore oil and gas fields, since FOWTs are still in the early stages of development. Finally, the trends of UAV technology and its application in FOWTs inspection are discussed, leading to our future research direction.

6.
Sensors (Basel) ; 22(23)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36501946

ABSTRACT

This paper presents the first implementation of a spiking neural network (SNN) for the extraction of cepstral coefficients in structural health monitoring (SHM) applications and demonstrates the possibilities of neuromorphic computing in this field. In this regard, we show that spiking neural networks can be effectively used to extract cepstral coefficients as features of vibration signals of structures in their operational conditions. We demonstrate that the neural cepstral coefficients extracted by the network can be successfully used for anomaly detection. To address the power efficiency of sensor nodes, related to both processing and transmission, affecting the applicability of the proposed approach, we implement the algorithm on specialised neuromorphic hardware (Intel ® Loihi architecture) and benchmark the results using numerical and experimental data of degradation in the form of stiffness change of a single degree of freedom system excited by Gaussian white noise. The work is expected to open a new direction of SHM applications towards non-Von Neumann computing through a neuromorphic approach.


Subject(s)
Algorithms , Neural Networks, Computer , Computers
7.
Int J Numer Methods Eng ; 123(17): 3950-3973, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36247933

ABSTRACT

This article presents a novel total Lagrangian cell-centered finite volume formulation of geometrically exact beams with arbitrary initial curvatures undergoing large displacements and finite rotations. The choice of rotation parameterization, the mathematical formulation of the beam kinematics, conjugate strain measures, and the linearization of the strong form of governing equations are described. The finite volume based discretization of the computational domain and the governing equations for each computational volume are presented. The discretized integral form of the equilibrium equations is solved using a block-coupled Newton-Raphson solution procedure. The efficacy of the proposed methodology is presented by comparing the simulated numerical results with classic benchmark test cases available in the literature. The objectivity of strain measures for the current formulation and mesh convergence studies for both initially straight and curved beam configurations are also discussed.

8.
Struct Control Health Monit ; 29(5): e2933, 2022 May.
Article in English | MEDLINE | ID: mdl-35864846

ABSTRACT

In this paper, the dynamic response of a damaged double-beam system traversed by a moving load is studied, including passive control using multiple tuned mass dampers. The double-beam system is composed of two homogeneous isotropic Euler-Bernoulli beams connected by a viscoelastic layer. The damaged upper beam is simulated using a double-sided open crack replaced by an equivalent rotational spring between two beam segments, and the lower primary beam is subjected to a moving load. The load is represented by a moving Dirac delta function and by a quarter car model, respectively. Road surface roughness (RSR) is classified as per ISO 8606:1995(E). The effect of vehicle speed of the moving oscillator and variable RSR profiles on the dynamics of this damaged double Euler-Bernoulli beam system for different crack-depth ratios (CDRs) at various crack locations is studied. It is observed that coupling of two beams leads to a vehicular effect on the damaged beam, even when no vehicle on it is present. The effects of single and multiple tuned mass dampers to control the vibrational responses of the primary beam due to damage on the secondary beam is studied next. The performance of tuned mass dampers to reduce the transverse vibrations of the damaged double-beam system and of the quarter car is investigated. The paper links the coupling between the two levels of double beam with the inertial coupling of the vehicle to the double-beam system.

9.
Sensors (Basel) ; 22(12)2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35746360

ABSTRACT

Mechanical vibrations occur in the operation of most technical systems [...].


Subject(s)
Electric Power Supplies , Vibration , Physical Therapy Modalities
10.
Sensors (Basel) ; 21(20)2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34695973

ABSTRACT

Effective Structural Health Monitoring (SHM) often requires continuous monitoring to capture changes of features of interest in structures, which are often located far from power sources. A key challenge lies in continuous low-power data transmission from sensors. Despite significant developments in long-range, low-power telecommunication (e.g., LoRa NB-IoT), there are inadequate demonstrative benchmarks for low-power SHM. Damage detection is often based on monitoring features computed from acceleration signals where data are extensive due to the frequency of sampling (~100-500 Hz). Low-power, long-range telecommunications are restricted in both the size and frequency of data packets. However, microcontrollers are becoming more efficient, enabling local computing of damage-sensitive features. This paper demonstrates the implementation of an Edge-SHM framework through low-power, long-range, wireless, low-cost and off-the-shelf components. A bespoke setup is developed with a low-power MEM accelerometer and a microcontroller where frequency and time domain features are computed over set time intervals before sending them to a cloud platform. A cantilever beam excited by an electrodynamic shaker is monitored, where damage is introduced through the controlled loosening of bolts at the fixed boundary, thereby introducing rotation at its fixed end. The results demonstrate how an IoT-driven edge platform can benefit continuous monitoring.


Subject(s)
Acceleration , Electric Power Supplies , Monitoring, Physiologic
11.
Sensors (Basel) ; 21(20)2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34696009

ABSTRACT

This paper investigates damage identification metrics and their performance using a cantilever beam with a piezoelectric harvester for Structural Health Monitoring. In order to do this, the vibrations of three different beam structures are monitored in a controlled manner via two piezoelectric energy harvesters (PEH) located in two different positions. One of the beams is an undamaged structure recognized as reference structure, while the other two are beam structures with simulated damage in form of drilling holes. Subsequently, five different damage identification metrics for detecting damage localization and extent are investigated in this paper. Overall, each computational model has been designed on the basis of the modified First Order Shear Theory (FOST), considering an MFC element consisting homogenized materials in the piezoelectric fiber layer. Frequency response functions are established and five damage metrics are assessed, three of which are relevant for damage localization and the other two for damage extent. Experiments carried out on the lab stand for damage structure with control damage by using a modal hammer allowed to verify numerical results and values of particular damage metrics. In the effect, it is expected that the proposed method will be relevant for a wide range of application sectors, as well as useful for the evolving composite industry.


Subject(s)
Benchmarking , Vibration
12.
Sensors (Basel) ; 20(23)2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33255221

ABSTRACT

While the potential use of energy harvesters as structural health monitors show promise, numerical models related to the design, deployment and performance of such monitors often present significant challenges. One such challenge lies in the problem of leak detection in fluid-carrying pipes. Recent advances in experimental studies on energy harvesters for such monitoring has been promising but there is a paucity in existing literature in linking relevant fluid-structure interaction models around such applications. This paper addresses the abovementioned issue by developing a numerical model with Computational Fluid Dynamics (CFD) and Finite Element (FE) tools and carries out extensive analyses to compare it with existing experiments under controlled laboratory conditions. Conventional Polyvinylidene Fluoride (PVDF) films for leak detection and monitoring of water pipes were considered in this regard. The work provides guidelines on parameter selection and modeling for experimental design and repeatability of results for these types of experiments in future, around the demands of leak monitoring. The usefulness of such models is also demonstrated through the ability to estimate the optimum distribution frequency of these sensors that will enable the detection of the smallest leak of consequence under a known or established flow condition.

13.
Sensors (Basel) ; 20(22)2020 Nov 22.
Article in English | MEDLINE | ID: mdl-33266489

ABSTRACT

With the aim of increasing the efficiency of maintenance and fuel usage in airplanes, structural health monitoring (SHM) of critical composite structures is increasingly expected and required. The optimized usage of this concept is subject of intensive work in the framework of the EU COST Action CA18203 "Optimising Design for Inspection" (ODIN). In this context, a thorough review of a broad range of energy harvesting (EH) technologies to be potentially used as power sources for the acoustic emission and guided wave propagation sensors of the considered SHM systems, as well as for the respective data elaboration and wireless communication modules, is provided in this work. EH devices based on the usage of kinetic energy, thermal gradients, solar radiation, airflow, and other viable energy sources, proposed so far in the literature, are thus described with a critical review of the respective specific power levels, of their potential placement on airplanes, as well as the consequently necessary power management architectures. The guidelines provided for the selection of the most appropriate EH and power management technologies create the preconditions to develop a new class of autonomous sensor nodes for the in-process, non-destructive SHM of airplane components.

14.
Sci Rep ; 10(1): 10178, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32576893

ABSTRACT

Anti-phase synchronization is the spontaneous formation of 2 clusters of oscillators synchronized between themselves within a cluster but opposite in phase with the other cluster. Neuronal networks in human and animal brains, ecological networks, climactic networks, and lasers are all systems that exhibit anti-phase synchronization although the phenomenon is encountered less frequently than the celebrated in-phase synchronization. We show that this disparity in occurrence is due to fundamental limits on the size of networks that can sustain anti-phase synchronization. We study the influence of network structure and coupling conditions on anti-phase synchronization in networks composed of coupled Stuart-Landau oscillators. The dependence of probability of anti-phase synchronization on connectivity of the network, strength of interaction over distance, and symmetry of the network is illustrated. Regardless of favourable network conditions, we show that anti-phase synchronization is limited to small networks, typically smaller than 20 nodes.

15.
Sensors (Basel) ; 19(11)2019 Jun 06.
Article in English | MEDLINE | ID: mdl-31174260

ABSTRACT

A vibration-based bridge scour detection procedure using a cantilever-based piezoelectric energy harvesting device (EHD) is proposed here. This has an advantage over an accelerometer-based method in that potentially, the requirement for a power source can be negated with the only power requirement being the storage and/or transmission of the data. Ideally, this source of power could be fulfilled by the EHD itself, although much research is currently being done to explore this. The open-circuit EHD voltage is used here to detect bridge frequency shifts arising due to scour. Using one EHD attached to the central bridge pier, both scour at the pier of installation and scour at another bridge pier can be detected from the EHD voltage generated during the bridge free-vibration stage, while the harvester is attached to a healthy pier. The method would work best with an initial modal analysis of the bridge structure in order to identify frequencies that may be sensitive to scour. Frequency components corresponding to harmonic loading and electrical interference arising from experiments are removed using the filter bank property of singular spectrum analysis (SSA). These frequencies can then be monitored by using harvested voltage from the energy harvesting device and successfully utilised towards structural health monitoring of a model bridge affected by scour.


Subject(s)
Equipment Design/methods , Monitoring, Physiologic/methods , Vibration , Accelerometry/methods , Computer Simulation , Electric Power Supplies , Humans , Physical Phenomena , Transducers
16.
Data Brief ; 17: 261-266, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29387741

ABSTRACT

The data presented in this article is in relation to the research article "Vibration energy harvesting based monitoring of an operational bridge undergoing forced vibration and train passage" Cahill et al. (2018) [1]. The article provides data on the full-scale bridge testing using piezoelectric vibration energy harvesters on Pershagen Bridge, Sweden. The bridge is actively excited via a swept sinusoidal input. During the testing, the bridge remains operational and train passages continue. The test recordings include the voltage responses obtained from the vibration energy harvesters during these tests and train passages. The original dataset is made available to encourage the use of energy harvesting for Structural Health Monitoring.

17.
PLoS One ; 11(9): e0162053, 2016.
Article in English | MEDLINE | ID: mdl-27649496

ABSTRACT

The process of Nuclei detection in high-grade breast cancer images is quite challenging in the case of image processing techniques due to certain heterogeneous characteristics of cancer nuclei such as enlarged and irregularly shaped nuclei, highly coarse chromatin marginalized to the nuclei periphery and visible nucleoli. Recent reviews state that existing techniques show appreciable segmentation accuracy on breast histopathology images whose nuclei are dispersed and regular in texture and shape; however, typical cancer nuclei are often clustered and have irregular texture and shape properties. This paper proposes a novel segmentation algorithm for detecting individual nuclei from Hematoxylin and Eosin (H&E) stained breast histopathology images. This detection framework estimates a nuclei saliency map using tensor voting followed by boundary extraction of the nuclei on the saliency map using a Loopy Back Propagation (LBP) algorithm on a Markov Random Field (MRF). The method was tested on both whole-slide images and frames of breast cancer histopathology images. Experimental results demonstrate high segmentation performance with efficient precision, recall and dice-coefficient rates, upon testing high-grade breast cancer images containing several thousand nuclei. In addition to the optimal performance on the highly complex images presented in this paper, this method also gave appreciable results in comparison with two recently published methods-Wienert et al. (2012) and Veta et al. (2013), which were tested using their own datasets.


Subject(s)
Algorithms , Breast Neoplasms/pathology , Breast/pathology , Cell Nucleus/pathology , Image Processing, Computer-Assisted/methods , Staining and Labeling/methods , Female , Humans , Image Interpretation, Computer-Assisted/methods , Pattern Recognition, Automated/methods
18.
Sensors (Basel) ; 16(4): 448, 2016 Mar 28.
Article in English | MEDLINE | ID: mdl-27043559

ABSTRACT

Wireless sensor nodes have a limited power budget, though they are often expected to be functional in the field once deployed for extended periods of time. Therefore, minimization of energy consumption and energy harvesting technology in Wireless Sensor Networks (WSN) are key tools for maximizing network lifetime, and achieving self-sustainability. This paper proposes an energy aware Adaptive Sampling Algorithm (ASA) for WSN with power hungry sensors and harvesting capabilities, an energy management technique that can be implemented on any WSN platform with enough processing power to execute the proposed algorithm. An existing state-of-the-art ASA developed for wireless sensor networks with power hungry sensors is optimized and enhanced to adapt the sampling frequency according to the available energy of the node. The proposed algorithm is evaluated using two in-field testbeds that are supplied by two different energy harvesting sources (solar and wind). Simulation and comparison between the state-of-the-art ASA and the proposed energy aware ASA (EASA) in terms of energy durability are carried out using in-field measured harvested energy (using both wind and solar sources) and power hungry sensors (ultrasonic wind sensor and gas sensors). The simulation results demonstrate that using ASA in combination with an energy aware function on the nodes can drastically increase the lifetime of a WSN node and enable self-sustainability. In fact, the proposed EASA in conjunction with energy harvesting capability can lead towards perpetual WSN operation and significantly outperform the state-of-the-art ASA.

19.
Accid Anal Prev ; 50: 499-511, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22683279

ABSTRACT

In recent years, cycling has been recognized and is being promoted as a sustainable mode of travel. The perception of cycling as an unsafe mode of travel is a significant obstacle in increasing the mode share of bicycles in a city. Hence, it is important to identify and analyze the factors which influence the safety experiences of the cyclists in an urban signalized multi-modal transportation network. Previous researches in the area of perceived safety of cyclists primarily considered the influence of network infrastructure and operation specific variables and are often limited to specific locations within the network. This study explores the factors that are expected to be important in influencing the perception of safety among cyclists but were never studied in the past. These factors include the safety behavior of existing cyclists, the users of other travel modes and their attitude toward cyclists, facilities and network infrastructures applicable to cycling as well as to other modes in all parts of an urban transportation network. A survey of existing cyclists in Dublin City was conducted to gain an insight into the different aspects related to the safety experience of cyclists. Ordered Logistic Regression (OLR) and Principal Component Analysis (PCA) were used in the analysis of survey responses. This study has revealed that respondents perceive cycling as less safe than driving in Dublin City. The new findings have shown that the compliance of cyclists with the rules of the road increase their safety experience, while the reckless and careless attitudes of drivers are exceptionally detrimental to their perceived safety. The policy implications of the results of analysis are discussed with the intention of building on the reputation of cycling as a viable mode of transportation among all network users.


Subject(s)
Bicycling , Perception , Safety , Adult , Aged , Female , Humans , Ireland , Logistic Models , Male , Middle Aged , Principal Component Analysis , Risk , Surveys and Questionnaires , Urban Population
SELECTION OF CITATIONS
SEARCH DETAIL
...