Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Dent ; 2021: 6651289, 2021.
Article in English | MEDLINE | ID: mdl-34054962

ABSTRACT

The aim of this study was to evaluate the mechanical properties of stainless steel (SS) orthodontic wires coated with zinc (Zn), using a Physical Vapored Deposition (PVD) machine. A total of 100 straight SS orthodontic wires were cut into pieces of 5 centimeters in length and were divided into two groups. Half of the wires were coated with Zn using a PVD machine, and the others remained uncoated. Tensile strength (n = 15), three-point bending (n = 15), and frictional resistance at 0° (n = 10) and 10° (n = 10) were measured to compare the mechanical properties of the Zn-coated and uncoated orthodontic wires using the universal testing machine. The surface of the coated wires was observed by SEM and AFM. An independent t-test, multivariate ANOVA, and measurement ANOVA were used for data analysis. SEM and AFM showed a homogenous Zn layer of 0.28 ± 0.006 µm on the SS wires. The tensile strength and three-point bending strength significantly increased after Zn coating of wires with the PVD method (P < 0.05). The friction resistance significantly reduced at both angulations following the coating procedure. The angle between the wire and bracket had no significant effect on the frictional resistance (P > 0.05). Coating with Zn improved the tensile and load-bending strength of SS orthodontic wires and reduced their frictional resistance which might be advantageous in terms of reducing the risk of root resorption during the orthodontic treatment.

2.
Chemosphere ; 260: 127560, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32688314

ABSTRACT

This study aimed to investigate the performance of a magnetic nano-biocomposite, chitosan conjugated magnetite nanoparticle (CH-MNP), for the removal of lead ions. The magnetite nanoparticles were synthesized through a controlled co-precipitation technique and were stabilized with citric acid. Subsequently, they were covalently bonded to chitosan via carbodiimide chemistry using EDAC/NHS activation. One of the notable advantages of this nano-biocomposite is its chemical conjugation, which does not have the weakness of the ultimate chitosan detachment of a physical bond and makes it an encouraging candidate for magnetic separation with no secondary waste production. The CH-MNPs had a diameter of ∼10 nm, with a saturation magnetization of 76.01 emu/g ensuring a superparamagnetic property. The response surface methodology (RSM) with a central composite design (CCD) framework was used for optimizing the adsorption process. The optimum conditions to achieve 92.15% of Pb(II) removal were found to be at a pH of 6.1 with the nano-adsorbent concentration of 1.04 g/L and a contact time of 59.92 min. Our adsorption isotherm data were fitted well with the Langmuir adsorption isotherm model, and the equilibrium data followed the pseudo-second-order kinetics and intraparticle diffusion kinetic model. The maximum Langmuir Pb(II) adsorption capacity was calculated to be 192.308 mg/g. These results suggest that the proposed synthetic nano-biocomposite is quite an ideal nano-adsorbent for Pb(II) removal in wastewater treatment technology.


Subject(s)
Chitosan/chemistry , Lead/isolation & purification , Magnetite Nanoparticles/chemistry , Water Purification/methods , Adsorption , Hydrogen-Ion Concentration , Ions , Kinetics , Wastewater/chemistry , Water Pollutants, Chemical/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...