Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; 30(4): 379-93, 2012.
Article in English | MEDLINE | ID: mdl-22694217

ABSTRACT

The ecdysone receptor (EcR) and the ultraspiracle protein (Usp) form the functional receptor for ecdysteroids that initiates metamorphosis in insects. The Usp and EcR DNA-binding domains (UspDBD and EcRDBD, respectively) form a heterodimer on the natural pseudopalindromic element from the hsp27 gene promoter. The conformational changes in the protein-DNA during the formation of the UspDBD-EcRDBD-hsp27 complex were analyzed. Recombined UspDBD and EcRDBD proteins were purified and fluorescein labeled (FL) using the intein method at the C-ends of both proteins. The changes in the distances from the respective C-ends of EcRDBD and/or UspDBD to the 5'- and/or 3'-end of the response element were measured using fluorescence resonance energy transfer (FRET) methodology. The binding of EcRDBD induced a strong conformational change in UspDBD and caused the C-terminal fragment of the UspDBD molecule to move away from both ends of the regulatory element. UspDBD also induced a significant conformational change in the EcRDBD molecule. The EcRDBD C-terminus moved away from the 5'-end of the regulatory element and moved close to the 3'-end. An analysis was also done on the effect that DHR38DBD, the Drosophila ortholog of the mammalian NGFI-B, had on the interaction of UspDBD and EcRDBD with hsp27. FRET analysis demonstrated that hsp27 bending was induced by DHR38DBD. Fluorescence data revealed that hsp27 had a shorter end-to-end distance both in the presence of EcRDBD as well as in the presence of EcRDBD together with DHR38DBD, with DNA bend angles of about 36.2° and 33.6°, respectively. A model of how DHR38DBD binds to hsp27 in the presence of EcRDBD is presented.


Subject(s)
DNA-Binding Proteins/chemistry , Drosophila Proteins/chemistry , Drosophila/genetics , HSP27 Heat-Shock Proteins/chemistry , Receptors, Steroid/chemistry , Response Elements , Transcription Factors/chemistry , Animals , Binding Sites , Cloning, Molecular , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Fluorescence Resonance Energy Transfer , HSP27 Heat-Shock Proteins/genetics , HSP27 Heat-Shock Proteins/metabolism , Metamorphosis, Biological/genetics , Models, Molecular , Nucleic Acid Conformation , Protein Binding , Protein Multimerization , Protein Structure, Tertiary , Receptors, Steroid/genetics , Receptors, Steroid/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Biol Chem ; 393(6): 457-71, 2012 May.
Article in English | MEDLINE | ID: mdl-22628309

ABSTRACT

Ecdysteroids coordinate essential biological processes in Drosophila through a complex of two nuclear receptors, the ecdysteroid receptor (EcR) and the ultraspiracle protein (Usp). Biochemical experiments have shown that, in contrast to Usp, the EcR molecule is characterized by high intramolecular plasticity. To investigate whether this plasticity is sufficient to form EcR complexes with nuclear receptors other than Usp, we studied the interaction of EcR with the DHR38 nuclear receptor. Previous in vitro experiments suggested that DHR38 can form complexes with Usp and thus disrupt Usp-EcR interaction with the specific hsp27pal response element. This article provides the experimental evidence that EcR is able to form complexes with DHR38 as well. The recombinant DNA-binding domains (DBDs) of EcR and DHR38 interact specifically on hsp27pal. However, the interaction between the receptors is not restricted to their isolated DBDs. We pre\xadsent data that indicate that the full-length EcR and DHR38 can also form specific complexes within the nuclei of living cells. This interaction is mediated by the hinge region of EcR, which was recently classified as an intrinsically disordered region. Our results indicate that DHR38 might modulate the activity of the Usp-EcR heterodimer by forming complexes with both of its components.


Subject(s)
Drosophila Proteins/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Steroid/metabolism , Amino Acid Sequence , Animals , Base Sequence , Cell Line , Cell Survival , DNA/genetics , DNA/metabolism , Drosophila Proteins/chemistry , Drosophila melanogaster/cytology , Drosophila melanogaster/metabolism , HSP27 Heat-Shock Proteins/genetics , Humans , Molecular Sequence Data , Promoter Regions, Genetic/genetics , Protein Binding , Protein Structure, Tertiary , Receptors, Cytoplasmic and Nuclear/chemistry , Receptors, Steroid/chemistry , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...