Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
eNeuro ; 11(2)2024 Feb.
Article in English | MEDLINE | ID: mdl-38176906

ABSTRACT

Functional brain imaging studies in humans suggest involvement of the cerebellum in fear conditioning but do not allow conclusions about the functional significance. The main aim of the present study was to examine whether patients with cerebellar degeneration show impaired fear conditioning and whether this is accompanied by alterations in cerebellar cortical activations. To this end, a 2 d differential fear conditioning study was conducted in 20 cerebellar patients and 21 control subjects using a 7 tesla (7 T) MRI system. Fear acquisition and extinction training were performed on day 1, followed by recall on day 2. Cerebellar patients learned to differentiate between the CS+ and CS-. Acquisition and consolidation of learned fear, however, was slowed. Additionally, extinction learning appeared to be delayed. The fMRI signal was reduced in relation to the prediction of the aversive stimulus and altered in relation to its unexpected omission. Similarly, mice with cerebellar cortical degeneration (spinocerebellar ataxia type 6, SCA6) were able to learn the fear association, but retrieval of fear memory was reduced. In sum, cerebellar cortical degeneration led to mild abnormalities in the acquisition of learned fear responses in both humans and mice, particularly manifesting postacquisition training. Future research is warranted to investigate the basis of altered fMRI signals related to fear learning.


Subject(s)
Brain Mapping , Conditioning, Classical , Humans , Animals , Mice , Conditioning, Classical/physiology , Extinction, Psychological/physiology , Fear/physiology , Learning , Magnetic Resonance Imaging
2.
Adv Exp Med Biol ; 1378: 53-73, 2022.
Article in English | MEDLINE | ID: mdl-35902465

ABSTRACT

Fear is an important emotion for survival, and the cerebellum has been found to contribute not only to innate affective and defensive behavior, but also to learned fear responses. Acquisition and retention of fear conditioned bradycardia and freezing have been shown to depend on the integrity of the cerebellar vermis in rodents. There is a considerable number of brain imaging studies, which observe activation of the human cerebellum in fear conditioning paradigms. Different to what one may expect based on the initial cerebellar lesion studies, activations related to the learned prediction of threat go well beyond the vermis, and are most prominent in the lateral cerebellum. Different parts of the cerebellum likely contribute to learning of autonomic, motor, emotional and cognitive responses involved in classical fear conditioning. The neural operation which is performed in the various parts of the cerebellum is frequently assumed to be the same. One hypothesis is that the cerebellum acts as, or is part of, a predictive device. More recent findings will be discussed that the cerebellum may not only be involved in the processing of sensory prediction errors, but also in the processing of reward and reward prediction errors, which may play a central role in emotions and emotional learning. Current knowledge about the intrinsic learning mechanisms underlying fear memory in the cerebellum, and its connections with subcortical and cortical fear circuitry will be presented. The chapter will conclude with a discussion on how disordered cerebellar fear learning may contribute to affective disorders.


Subject(s)
Cerebellum , Conditioning, Classical , Cerebellum/physiology , Conditioning, Classical/physiology , Emotions/physiology , Fear/physiology , Humans , Learning
3.
Cell Mol Life Sci ; 79(4): 197, 2022 Mar 19.
Article in English | MEDLINE | ID: mdl-35305155

ABSTRACT

Absence seizures (ASs) are characterized by pathological electrographic oscillations in the cerebral cortex and thalamus, which are called spike-and-wave discharges (SWDs). Subcortical structures, such as the cerebellum, may well contribute to the emergence of ASs, but the cellular and molecular underpinnings remain poorly understood. Here we show that the genetic ablation of P/Q-type calcium channels in cerebellar granule cells (quirky) or Purkinje cells (purky) leads to recurrent SWDs with the purky model showing the more severe phenotype. The quirky mouse model showed irregular action potential firing of their cerebellar nuclei (CN) neurons as well as rhythmic firing during the wave of their SWDs. The purky model also showed irregular CN firing, in addition to a reduced firing rate and rhythmicity during the spike of the SWDs. In both models, the incidence of SWDs could be decreased by increasing CN activity via activation of the Gq-coupled designer receptor exclusively activated by designer drugs (DREADDs) or via that of the Gq-coupled metabotropic glutamate receptor 1. In contrast, the incidence of SWDs was increased by decreasing CN activity via activation of the inhibitory Gi/o-coupled DREADD. Finally, disrupting CN rhythmic firing with a closed-loop channelrhodopsin-2 stimulation protocol confirmed that ongoing SWDs can be ceased by activating CN neurons. Together, our data highlight that P/Q-type calcium channels in cerebellar granule cells and Purkinje cells can be relevant for epileptogenesis, that Gq-coupled activation of CN neurons can exert anti-epileptic effects and that precisely timed activation of the CN can be used to stop ongoing SWDs.


Subject(s)
Cerebellar Nuclei , Epilepsy, Absence , Action Potentials/physiology , Animals , Epilepsy, Absence/genetics , Mice , Seizures/genetics , Signal Transduction
4.
Nat Commun ; 12(1): 4488, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34301944

ABSTRACT

Opn7b is a non-visual G protein-coupled receptor expressed in zebrafish. Here we find that Opn7b expressed in HEK cells constitutively activates the Gi/o pathway and illumination with blue/green light inactivates G protein-coupled inwardly rectifying potassium channels. This suggests that light acts as an inverse agonist for Opn7b and can be used as an optogenetic tool to inhibit neuronal networks in the dark and interrupt constitutive inhibition in the light. Consistent with this prediction, illumination of recombinant expressed Opn7b in cortical pyramidal cells results in increased neuronal activity. In awake mice, light stimulation of Opn7b expressed in pyramidal cells of somatosensory cortex reliably induces generalized epileptiform activity within a short (<10 s) delay after onset of stimulation. Our study demonstrates a reversed mechanism for G protein-coupled receptor control and Opn7b as a tool for controlling neural circuit properties.


Subject(s)
GTP-Binding Proteins/metabolism , Neurons/metabolism , Opsins/metabolism , Optogenetics/methods , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Animals , GTP-Binding Proteins/genetics , HEK293 Cells , Humans , Mice, Inbred C57BL , Neurons/physiology , Opsins/genetics , Pyramidal Cells/metabolism , Pyramidal Cells/physiology , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/genetics , Somatosensory Cortex/cytology , Somatosensory Cortex/metabolism , Synapses/genetics , Synapses/physiology , Zebrafish/genetics , Zebrafish Proteins/genetics
5.
PLoS One ; 14(12): e0226737, 2019.
Article in English | MEDLINE | ID: mdl-31856211

ABSTRACT

Previous research has suggested that the short (S)-allele of the 5-HT transporter gene-linked polymorphic region (5-HTTLPR) may confer "differential susceptibility" to environmental impact with regard to the expression of personality traits, depressivity and impulsivity. However, little is known about the role of 5-HTTLPR concerning the association between childhood adversity and empathy. Here, we analyzed samples of 137 healthy participants and 142 individuals diagnosed with borderline personality disorder (BPD) focusing on the 5-HTTLPR genotype (S/L-carrier) and A/G SNP (rs25531), in relation to childhood maltreatment and empathy traits. Whereas no between-group difference in 5-HTTLPR genotype distribution emerged, the S-allele selectively moderated the impact of childhood maltreatment on empathic perspective taking, whereby low scores in childhood trauma were associated with superior perspective taking. In contrast, L-homozygotes seemed to be largely unresponsive to variation in environmental conditions in relation to empathy, suggesting that the S-allele confers "differential susceptibility". Moreover, a moderation analysis and tests for differential susceptibility yielded similar results when transcriptional activity of the serotonin transporter gene was taken into account. In conclusion, our findings suggest that the S-allele of the 5-HTTLPR is responsive to early developmental contingencies for "better and worse", i.e. conferring genetic plasticity, especially with regard to processes involving emotional resonance.


Subject(s)
Borderline Personality Disorder/genetics , Child Abuse/psychology , Empathy/genetics , Polymorphism, Single Nucleotide , Serotonin Plasma Membrane Transport Proteins/genetics , Adolescent , Adult , Borderline Personality Disorder/psychology , Empathy/physiology , Female , Heterozygote , Humans , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...