Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther Oncol ; 32(1): 200769, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38596306

ABSTRACT

Despite the recent advancement in diagnosis and therapy, pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, is still the most lethal cancer with a low five-year survival rate. There is an urgent need to develop new therapies to address this issue. In this study, we developed a treatment strategy by modifying tumor suppressor miRNAs, miR-15a and miR-194, with the chemotherapeutic gemcitabine (Gem) to create Gem-modified mimics, Gem-miR-15a and Gem-miR-194, respectively. In a panel of PDAC cell lines, we found that Gem-miR-15a and Gem-miR-194 induce cell-cycle arrest and apoptosis, and these mimics are potent inhibitors with IC50 values up to several hundred fold less than their native counterparts or Gem alone. Furthermore, we found that Gem-miR-15a and Gem-miR-194 retained miRNA function by downregulating the expression of several key targets including WEE1, CHK1, BMI1, and YAP1 for Gem-miR-15a, and FOXA1 for Gem-miR-194. We also found that our Gem-modified miRNA mimics exhibit an enhanced efficacy compared to Gem in patient-derived PDAC organoids. Furthermore, we observed that Gem-miR-15a significantly inhibits PDAC tumor growth in vivo without observing any noticeable signs of toxicity. Overall, our results demonstrate the therapeutic potential of Gem-modified miRNAs as a treatment strategy for PDAC.

2.
Int J Mol Sci ; 24(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38139352

ABSTRACT

The alarmingly low five-year survival rate for pancreatic cancer presents a global health challenge, contributing to about 7% of all cancer-related deaths. Late-stage diagnosis and high heterogeneity are the biggest hurdles in treating pancreatic cancer. Thus, there is a pressing need to discover novel biomarkers that could help in early detection as well as improve therapeutic strategies. MicroRNAs (miRNAs), a class of short non-coding RNA, have emerged as promising candidates with regard to both diagnostics and therapeutics. Dysregulated miRNAs play pivotal roles in accelerating tumor growth and metastasis, orchestrating tumor microenvironment, and conferring chemoresistance in pancreatic cancer. The differential expression profiles of miRNAs in pancreatic cancer could be utilized to explore novel therapeutic strategies. In this review, we also covered studies on recent advancements in various miRNA-based therapeutics such as restoring miRNAs with a tumor-suppressive function, suppressing miRNA with an oncogenic function, and combination with chemotherapeutic drugs. Despite several challenges in terms of specificity and targeted delivery, miRNA-based therapies hold the potential to revolutionize the treatment of pancreatic cancer by simultaneously targeting multiple signaling pathways.


Subject(s)
MicroRNAs , Pancreatic Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Biomarkers, Tumor/genetics , Signal Transduction/genetics , Tumor Microenvironment/genetics , Gene Expression Regulation, Neoplastic
3.
bioRxiv ; 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37645827

ABSTRACT

Pancreatic cancer, including its most common subtype, pancreatic adenocarcinoma (PDAC), has the lowest five-year survival rate among patients with pancreatic cancer in the United States. Despite advancements in anticancer treatment, the overall median survival for patients with PDAC has not dramatically improved. Therefore, there is an urgent need to develop new strategies of treatment to address this issue. Non-coding RNAs, including microRNAs (miRNAs), have been found to have major roles in carcinogenesis and the subsequent treatment of various cancer types like PDAC. In this study, we developed a treatment strategy by modifying tumor suppressor miRNAs, hsa-miRNA-15a (miR-15a) and hsa-miRNA-194-1 (miR-194), with the nucleoside analog chemotherapeutic gemcitabine (Gem) to create Gem-modified mimics of miR-15a (Gem-miR-15a) and miR-194 (Gem-miR-194). In a panel of PDAC cell lines, we found that Gem-miR-15a and Gem-miR-194 induce cell cycle arrest and apoptosis, and these mimics are potent inhibitors with IC 50 values up to several hundred fold less than their native counterparts or Gem alone. Furthermore, we found that Gem-miR-15a and Gem-miR-194 retained miRNA function by downregulating the expression of several key targets including WEE1, CHK1, BMI1, and YAP1 for Gem-miR-15a, and FOXA1 for Gem-miR-194. We also found that our Gem-modified miRNA mimics exhibit an enhanced efficacy compared to Gem alone in patient-derived PDAC organoids. Furthermore, we observed that Gem-miR-15a significantly inhibits PDAC tumor growth in vivo without observing any noticeable signs of toxicity. Overall, our results demonstrate the therapeutic potential of Gem-modified miRNAs as a treatment strategy for PDAC. One Sentence Summary: Yuen and Hwang et. al. have developed a potent therapeutic strategy for patients with pancreatic cancer by modifying microRNAs with gemcitabine.

4.
Nat Prod Res ; 28(17): 1379-82, 2014.
Article in English | MEDLINE | ID: mdl-24697628

ABSTRACT

Triticum aestivum (wheat grass) is widely used in traditional medicine to treat various diseases. Previously the purified compounds and crude extract of T. aestivum were established to have iron chelation potency and antioxidant activity. So it is necessary to evaluate the toxic properties of any compound isolated from plant extract to prevent any untoward side effects. The aim of this study was to determine the acute oral toxicity level of our purified compounds, i.e. mugineic acids and methylpheophorbide a., and crude extract of T. aestivum, on Swiss albino mice at dosage of 2000 mg/kg for a period of 14 days using the organisation for economic co-operation and development guidelines 423. There was no mortality. No change in behavioural pattern, clinical signs, body weight and blood biochemistry profile were observed. Kidney and liver showed normal histo-pathological architecture. Hence, the oral administration of compounds and extract of T. aestivum did not produce any significant toxic effect on mice. Thus we may conclude that the extract can be utilised for pharmaceutical formulations as iron chelator and antioxidant agent for various diseases.


Subject(s)
Antioxidants/analysis , Antioxidants/isolation & purification , Iron Chelating Agents/analysis , Triticum/chemistry , Animals , Kidney/metabolism , Liver/metabolism , Male , Mice , Toxicity Tests, Acute
SELECTION OF CITATIONS
SEARCH DETAIL
...