Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
3 Biotech ; 14(4): 107, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38476645

ABSTRACT

Antibiotics in animal farms play a significant role in the proliferation and spread of antibiotic-resistant genes (ARGs) and antibiotic-resistant bacteria (ARB). The dissemination of antibiotic resistance from animal facilities to the nearby environment has become an emerging concern. The present study was focused on the isolation and molecular identification of Escherichia coli (E. coli) isolates from broiler chicken meat and further access their antibiotic-resistant profile against different antibiotics. Broiler chicken meat samples were collected from 44 retail poultry slaughter shops in Prayagraj district, Uttar Pradesh, India. Standard bacteriological protocols were followed to first isolate the E. coli, and molecular characterization was performed with genus-specific PCR. Phenotypic and genotypic antibiotic-resistant profiles of all confirmed 154 E. coli isolates were screened against 09 antibiotics using the disc diffusion and PCR-based method for selected resistance genes. In antibiotic sensitivity testing, the isolates have shown maximum resistance potential against tetracycline (78%), ciprofloxacin (57.8%), trimethoprim (54.00%) and erythromycin (49.35%). E. coli bacterial isolates have shown relative resistant to amoxicillin-clavulanic acid (43.00%) and against ampicillin (44.15%). Notably, 64.28% E. coli bacteria were found to be multidrug resistant. The results of PCR assays exposed that tetA and blaTEM genes were the most abundant genes harboured by 83 (84.0%) and 82 (82.0%) out of all 99 targeted E. coli isolates, followed by 48.0% for AmpC (CITM) gene and cmlA (23.00%) for chloramphenicol resistance. It is notable that most of the isolates collected from chicken meat samples were multidrug resistant (> 3 antibiotics), with more than 80% of them carrying tetracycline (tetA) and beta-lactam gene (blaTEM). This study highlights the high risk associated with poultry products due to MDR-E. coli and promote the limited use of antibiotics in poultry farms. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-03950-7.

2.
Ann Gastroenterol ; 36(4): 369-377, 2023.
Article in English | MEDLINE | ID: mdl-37396008

ABSTRACT

There are no established standards for the diagnosis of Clostridioides difficile infection (CDI), even though the importance of this infection in humans is well known. The effectiveness of the commercially available techniques, which are all standardized for use with human feces, is also limited in terms of the accuracy of the tests. Furthermore, the current approach lacks a point-of-care diagnosis with an acceptable range of sensitivity and specificity. This article reviews the challenges and possible future solutions for the detection of CDI in adults. Existing diagnostic methods, such as enzyme-linked immunoassays and microbial culturing for the detection of toxins A and B, appear to work poorly in samples but exhibit great sensitivity for glutamate dehydrogenase. Real-time polymerase chain reaction and nucleic acid amplification tests have been investigated in a few studies on human samples, but so far have shown poor turnaround times. Thus, developing a multiplex point-of-care test assay with high sensitivity and specificity is required as a bedside approach for diagnosing this emerging infection.

SELECTION OF CITATIONS
SEARCH DETAIL
...