Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Physiol Mol Biol Plants ; 29(9): 1269-1288, 2023 Sep.
Article in English | MEDLINE | ID: mdl-38024956

ABSTRACT

Previous studies associated with seed potentiation support the critical role of metabolic readjustment in restricting the loss of seed vigor and viability of aged seeds. However, their exact role in the regulation of 'oxidative windows' of potentiated seeds is rarely studied and hence is the subject of the present investigation. Seed potentiation of two contrasting indigenous aromatic rice cultivars, differing in sensitivity towards redox attributes (Oryza sativa L., Cultivars Tulaipanji and Jamainadu), with standardized doses of hydrogen peroxide (20 mM), triadimefon (250 µM), herbal extract (1% aqueous extract of Lantana camara flower) and distilled water before accelerated aging (RH 92% and 41 °C for 24 h) found to have significant impact on redox regulation of aged seeds and improvement of germination phenotypes. The efficacy of integrated RBOH-ascorbate-glutathione/catalase pathway, redox status and other redox fingerprints in the metabolic landscape of potentiated-aged seeds vis-a-vis non-potentiated-aged seeds corroborate the impact of seed potentiation on the regulation of 'oxidative window' of experimental rice seeds. Gene expression analysis of central redox hub enzymes (Osrboh, OsAPx2, OsGRase, OsCatA) strongly substantiates the impact of seed potentiation on transcriptional regulation of genes for redox homeostasis in accelerated aged seeds. The novelty of the current effort is that it suggests a positive nexus between seed potentiation-induced redox regulation and hormonal homeostasis. The efficacy of seed potentiation on the redox regulation of experimental accelerated aged seeds is found to be cultivar-specific and comparatively better in the cultivar Tulaipanji as compared to the cultivar Jamainadu and in the order herbal extract, hydrogen peroxide, hydropriming and triadimefon. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01375-9.

SELECTION OF CITATIONS
SEARCH DETAIL