Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Small Methods ; : e2301461, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38243881

ABSTRACT

This research examines vanadium-deficient V2 C MXene, a two-dimensional (2D) vanadium carbide with exceptional electrochemical properties for rechargeable zinc-ion batteries. Through a meticulous etching process, a V-deficient, porous architecture with an expansive surface area is achieved, fostering three-dimensional (3D) diffusion channels and boosting zinc ion storage. Analytical techniques like scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller, and X-ray diffraction confirm the formation of V2 C MXene and its defective porous structure. X-ray photoelectron spectroscopy further verifies its transformation from the MAX phase to MXene, noting an increase in V3+ and V4+ states with etching. Cyclic voltammetry reveals superior de-zincation kinetics, evidenced by consistent V3+ /V4+ oxidation peaks at varied scanning rates. Overall, this V-deficient MXene outperforms raw MXenes in capacity and rate, although its capacity diminishes over extended cycling due to structural flaws. Theoretical analyses suggest conductivity rises with vacancies, enhancing 3D ionic diffusion as vacancy size grows. This work sheds light on enhancing V-based MXene structures for optimized zinc-ion storage.

2.
ACS Omega ; 8(2): 2629-2638, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36687114

ABSTRACT

Charge storage in electrochemical double-layer capacitors (EDLCs) is via the adsorption of electrolyte counterions in their positive and negative electrodes under an applied potential. This study investigates the EDLC-type charge storage in carbon nanotubes (CNT) electrodes in aqueous acidic (NaHSO4), basic (NaOH), and neutral (Na2SO4) electrolytes of similar cations but different anions as well as similar anions but different cations (Na2SO4 and Li2SO4) in a two-electrode Swagelok-type cell configuration. The physicochemical properties of ions, such as mobility/diffusion and solvation, are correlated with the charge storage parameters. The neutral electrolytes offer superior charge storage over the acidic and basic counterparts. Among the studied ions, SO4 2- and Li+ showed the most significant capacitance owing to their larger solvated ion size. The charge stored by the anions and cations follows the order SO4 2- > HSO4 - > OH- and Li+ > Na+, respectively. Consequently, the CNT//Li2SO4//CNT cell displayed outstanding charge storage indicators (operating voltage ∼0-2 V, specific capacitance ∼122 F·g-1, specific energy ∼67 W h·kg-1, and specific power ∼541 W·kg-1 at 0.5 A·g-1) than the other cells, which could light a red light-emitting diode (2.1 V) for several minutes. Besides, the CNT//Li2SO4//CNT device showed exceptional rate performance with a capacitance retention of ∼95% at various current densities (0.5-2.5 A·g-1) after 6500 cycles. The insights from this work could be used to design safer electrochemical capacitors of high energy density and power density.

3.
Nanoscale Adv ; 1(10): 3807-3835, 2019 Oct 09.
Article in English | MEDLINE | ID: mdl-36132093

ABSTRACT

Electrolytes are one of the vital constituents of electrochemical energy storage devices and their physical and chemical properties play an important role in these devices' performance, including capacity, power density, rate performance, cyclability and safety. This article reviews the current state of understanding of the electrode-electrolyte interaction in supercapacitors and battery-supercapacitor hybrid devices. The article discusses factors that affect the overall performance of the devices such as the ionic conductivity, mobility, diffusion coefficient, radius of bare and hydrated spheres, ion solvation, viscosity, dielectric constant, electrochemical stability, thermal stability and dispersion interaction. The requirements needed to design better electrolytes and the challenges that still need to be addressed for building better supercapacitive devices for the competitive energy storage market have also been highlighted.

4.
J Nanosci Nanotechnol ; 18(5): 3283-3290, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29442829

ABSTRACT

The long term dispersion stability for an improved thermal conductivity is a challenging issue that needs to be solved for heat transfer applications. Hence, this research investigated that a thin layer of SiO2 coating (2-5 nm) over WO3 nanostructures (SiO2@WO3) of different shapes exhibit superior dispersion (0.01%) stability for longer duration (∼3 days) as evident by steady zeta potential (-30 ↔ -60.70 mV), no significant change in particle-size (139 ↔ 147 nm) distribution, density (1.001 ↔ 0.988 g/cm3) and refractive index (1.335 ↔ 1.332) etc., are indicator for colloidal stability relative to bare WO3 nanoparticles and bulk SiO2 aqueous suspension which quickly settles down within 1-2 hours after 30 min sonication at 23 °C. Thin Si-OH layer over WO3 surface imparts superior hydrophilicity, larger surface area for effective solute-solvent (SiO2@WO3-H2O) interaction for improved colloidal stability showing no sedimentation and color change of SiO2@WO3 dispersion (0.01%) even after 3 days due to repulsive interaction between negatively charged Si-O- particles. Thereby, thermal conductivity is found to be quite stable (0.631 ↔ 0.618 W/m K) up to 3 days, whereas aqueous suspension of bare WO3 and SiO2 particles quickly settle down and thermal conductivity rapidly decreased to a value of 0.584 W/m K for de-ionized water further indicates the significance of SiO2 coating. Depending on the thickness of SiO2 layer and volume fraction of SiO2@WO3, a maximum of 8-10% increment of thermal conductivity was achieved where anisotropic WO3 displayed always more (∼5%) thermal conductivity than typical spherical nanoparticles.

5.
Langmuir ; 34(5): 1873-1882, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29345940

ABSTRACT

This article reports the synthesis of cuprous oxide (Cu2O) and cupric oxide (CuO) nanowires by controlling the calcination environment of electrospun polymeric nanowires and their charge storage properties. The Cu2O nanowires showed higher surface area (86 m2 g-1) and pore size than the CuO nanowires (36 m2 g-1). Electrochemical analysis was carried out in 6 M KOH, and both the electrodes showed battery-type charge storage mechanism. The electrospun Cu2O electrodes delivered high discharge capacity (126 mA h g-1) than CuO (72 mA h g-1) at a current density of 2.4 mA cm-2. Electrochemical impedance spectroscopy measurements show almost similar charge-transfer resistance in Cu2O (1.2 Ω) and CuO (1.6 Ω); however, Cu2O showed an order of magnitude higher ion diffusion. The difference in charge storage between these electrodes is attributed to the difference in surface properties and charge kinetics at the electrode. The electrode also shows superior cyclic stability (98%) and Coulombic efficiency (98%) after 5000 cycles. Therefore, these materials could be acceptable choices as a battery-type or pseudocapacitive electrode in asymmetric supercapacitors.

6.
J Nanosci Nanotechnol ; 15(5): 3670-6, 2015 May.
Article in English | MEDLINE | ID: mdl-26504990

ABSTRACT

This paper presents the importance of different shapes and crystal phases of TiO2 nanostructures such as TiO2 P-25 (70:30 anatase and rutile), as-prepared nanorods (pure anatase) and sodium titanate nanotubes (orthorhombic Na2Ti2O5 x H2O crystal) on the thermal conductivity of de-ionized water and ethylene glycol. It revealed that TiO2 nanorods (L x W = 81-134 nm x 8-13 nm and surface area = 79 m2 g(-1)) showed always higher thermal conductivity than porous nanotubes (L x W = 85-115 nm x 9-12 nm and surface area = 176 m2 g(-1)) and commercial TiO2 P-25 (30-55 nm surface area = 56 m2 g(-1)), which was explained by their differences in crystallinity, crystal phases, compactness, surface exposed atoms, surface area and much greater mean free path of longitudinal phonon vibrations along its lateral dimensions. The subsequent effect of sonication time from 5-10 h results into the breakdown of TiO2 nanorods cluster (42 to 28 nm) with the instantaneous increase in negative zeta potential values from -31 to -45 mV, respectively, seems to be an additional cause for enhancement in its thermal conductivity.


Subject(s)
Ethylene Glycol/chemistry , Nanotubes/chemistry , Titanium/chemistry , Water/chemistry , Particle Size , Sonication , Thermal Conductivity
SELECTION OF CITATIONS
SEARCH DETAIL
...