Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 362: 142586, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38876328

ABSTRACT

The remediation of diesel-contaminated soil is a critical environmental concern, driving the need for effective solutions. Recently, the methodology of Non-thermal Atmospheric Plasma (NTAP) technology, which is equipped with a Dielectric Barrier Discharge (DBD) electrode and has become a feasible approach, was proven to be viable. The reactive species from the plasma were exposed to the contaminated soil in this investigation using the NTAP technique. The reacted soil was then extracted using dichloromethane, and the amount of Total Petroleum Hydrocarbon (TPH) removed was assessed. Investigation into varying power levels, treatment durations, and hydrogen peroxide integration revealed significant findings. With an initial concentration of 3086 mg of diesel/kg of soil and a pH of 5.0, 83% of the diesel was removed from the soil at 150 W in under 20 min. Extended exposure to NTAP further improved removal rates, highlighting the importance of treatment duration optimization. Additionally, combining hydrogen peroxide (H2O2) with NTAP enhanced removal efficiency by facilitating diesel breakdown. This synergy offers a promising avenue for comprehensive soil decontamination. Further analysis considered the impact of soil characteristics on removal efficacy. Mechanistically, NTAP generates reactive species that degrade diesel into less harmful compounds, aiding subsequent removal. Overall, NTAP advances environmental restoration efforts by offering a quick, economical, and environmentally benign method of remediating diesel-contaminated soil especially when used in tandem with hydrogen peroxide.

2.
J Hazard Mater ; 469: 134015, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38518691

ABSTRACT

Developing effective water treatment materials, particularly through proven adsorption methods, is crucial for removing heavy metal contaminants. This study synthesizes a cost-effective three-dimensional material encapsulating graphitic carbon nitride-layered double oxide (GCN-LDO) in sodium alginate (SA) through the freeze-drying method. The material is applied to remove uranium (U(VI)) and cadmium (Cd(II)) in real water systems. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) analyses conclusively verified the elemental composition and successful encapsulation of GCN-LDO within the SA matrix. Removal effectiveness was tested under various conditions, including adsorbent dose, ionic strength, contact time, temperature, different initial pollutant concentrations, and the impact of co-existing ions. The adsorption of U(VI) and Cd(II) conformed to the pseudo-second-order (PSO) kinetic model, signifying a chemical interaction between the sodium alginate-graphitic carbon nitride-layered double oxide (SA-GCN-LDO) sponge and the metal ions. The Langmuir isotherm indicated monolayer, homogeneous adsorption for U(VI) and Cd(II) with capacities of 158.25 and 165.00 mg/g. SA-GCN-LDO recyclability was found in up to seven adsorption cycles with a removal efficacy of 70%. The temperature effect study depicts the exothermic nature of the U(VI) and Cd(II) ion removal process. Various mechanisms involved in U(VI) and Cd(II) removal were proposed. Further, continuous fixed bed column studies were performed, and Thomas and the Yoon-Nelson model were studied. These insights from this investigation contribute to advancing our knowledge of the material's performance within the context of U(VI) and Cd(II) adsorption, paving the way for optimized and sustainable water treatment solutions.

3.
Chemosphere ; 346: 140551, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38303398

ABSTRACT

The synthesis and characterization of graphitic carbon nitride (GCN) and its composites with calcined layered double hydroxide (CLDH) were examined in this investigation. The goal was to assess these composites' maximum adsorption capacity (qmax) for U(VI) ions in wastewater. Several different characterization methodologies were utilized to examine the fabricated substances. These methods encompass X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The GCN-CLDH composite displayed enhanced adsorption ability towards U(VI) ions due to its high surface functionality. Langmuir adsorption isotherm analysis showed that more than 99% of U(VI) ions were adsorbed, with a qmax of 196.69 mg/g. The kinetics data exhibited a good fit for a pseudo-second-order (PSO) model. Adsorption mechanisms involving precipitation and surface complexation via Lewis's acid-base interactions were proposed. The application of the GCN-CLDH composite in groundwater demonstrated adsorption below the maximum permissible limit established by USEPA, indicating improved cycling stability. These observations underscore the capacity of the GCN-CLDH composite's proficiency in adsorbing U(VI) aqueous solutions containing radioactive metals.


Subject(s)
Graphite , Nitrogen Compounds , Water Pollutants, Chemical , Water , Spectroscopy, Fourier Transform Infrared , Hydroxides/chemistry , Adsorption , Kinetics , Water Pollutants, Chemical/analysis
4.
Sci Rep ; 14(1): 4267, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38383598

ABSTRACT

This study synthesized a highly efficient KOH-treated sunflower stem activated carbon (KOH-SSAC) using a two-step pyrolysis process and chemical activation using KOH. The resulting material exhibited exceptional properties, such as a high specific surface area (452 m2/g) and excellent adsorption capacities for phenol (333.03 mg/g) and bisphenol A (BPA) (365.81 mg/g). The adsorption process was spontaneous and exothermic, benefiting from the synergistic effects of hydrogen bonding, electrostatic attraction, and stacking interactions. Comparative analysis also showed that KOH-SSAC performed approximately twice as well as sunflower stem biochar (SSB), indicating its potential for water treatment and pollutant removal applications. The study suggests the exploration of optimization strategies to further enhance the efficiency of KOH-SSAC in large-scale scenarios. These findings contribute to the development of improved materials for efficient water treatment and pollution control.


Subject(s)
Benzhydryl Compounds , Helianthus , Water Pollutants, Chemical , Phenol/analysis , Charcoal/chemistry , Wastewater , Phenols/analysis , Thermodynamics , Adsorption , Kinetics , Water Pollutants, Chemical/analysis
5.
Chemosphere ; 337: 139323, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37392794

ABSTRACT

In this study, first time the combination of composites with Phytic acid (PA) as the organic binder cross-linker is reported. The novel use of PA with single and double conducting polymers (polypyrrole (Ppy) and polyaniline (Pani)) were tested against removal of Cr(VI) from wastewater. Characterizations (FE-SEM, EDX, FTIR, XRD, XPS) were performed to study the morphology and removal mechanism. The adsorption removal capability of Polypyrrole - Phytic Acid - Polyaniline (Ppy-PA-Pani) was deemed to be higher than Polypyrrole - Phytic Acid (Ppy-PA) due to the mere existence of Polyaniline as the extra polymer. The kinetics followed 2nd order with equilibration at 480 min, but Elovich model confirmed that chemisorption is followed. Langmuir isotherm model exhibited maximum adsorption capacity of 222.7-321.49 mg/g for Ppy-PA-Pani and 207.66-271.96 mg/g for Ppy-PA at 298K-318K with R2 values of 0.9934 and 0.9938 respectively. The adsorbents were reusable for 5 cycles of adsorption-desorption. The thermodynamic parameter, ΔH shows positive values confirmed the adsorption process was endothermic. From overall results, the removal mechanism is believed to be chemisorption through Cr(VI) reduction to Cr(III). The use of phytic acid (PA) as organic binder with combination of dual conducting polymer (Ppy-PA-Pani) was invigorating the adsorption efficiency than just single conducting polymer (Ppy-PA).


Subject(s)
Polymers , Water Pollutants, Chemical , Phytic Acid , Water Pollutants, Chemical/analysis , Pyrroles , Chromium/analysis , Adsorption , Kinetics , Hydrogen-Ion Concentration
6.
Int J Biol Macromol ; 140: 441-453, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31437512

ABSTRACT

There has been extensive utilization of poloxamer 407 (PM) for the delivery of various ophthalmic drugs aimed at efficient ophthalmic drug delivery approach for longer precorneal residence time along with acceptable bioavailability of drugs. We have studied the effect of nanocellulose grafted collagen (CGC) on the performance of in situ gels based on PM for the controlled in vitro release of Ketorolac Tromethamine (KT). CGC has shown great influence evident by the reduction in PM critical gelation concentration, increased gel strength, and prolonged the release of loaded drugs compared with the virgin PM gel. The engineered nanocomposite formulations established an anomalous diffusion mechanism along with a Fickian diffusion controlled drug release for 1.5 & 1.75 w/v% CGC reinforced PM. Hence, the synthesized in situ nanocomposites are potential candidates for ophthalmic drug delivery system.


Subject(s)
Cellulose/chemistry , Drug Delivery Systems , Nanofibers/chemistry , Ophthalmic Solutions/chemistry , Cell Line , Cellulose/chemical synthesis , Cellulose/pharmacology , Collagen/chemical synthesis , Collagen/chemistry , Collagen/therapeutic use , Drug Compounding , Drug Liberation , Humans , Ketorolac Tromethamine/chemical synthesis , Ketorolac Tromethamine/chemistry , Nanofibers/therapeutic use , Ophthalmic Solutions/chemical synthesis , Ophthalmic Solutions/therapeutic use , Poloxamer/chemistry , Rheology
SELECTION OF CITATIONS
SEARCH DETAIL
...