Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(19): 13477-13487, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38690585

ABSTRACT

Recently, metal sulfides have begun to receive attention as potential cost-effective materials for thermoelectric applications beyond optoelectronic and photovoltaic devices. Herein, based on a comparative analysis of the structural and transport properties of 2D PbSnS2 and 1D PbSnS3, we demonstrate that the intrinsic effects that govern the low lattice thermal conductivity (κL) of these sulfides originate from the combination of the low dimensionality of their crystal structures with the stereochemical activity of the lone-pair electrons of cations. The presence of weak bonds in these materials, responsible for phonon scattering, results in inherently low κL of 1.0 W/m K in 1D PbSnS3 and 0.6 W/m K in 2D PbSnS2 at room temperature. However, the nature of the thermal transport is quite distinct. 1D PbSnS3 exhibits a higher thermal conductivity with a crystalline-like peak at low temperatures, while 2D PbSnS2 demonstrates glassy thermal conductivity in the entire temperature range investigated. First-principles density functional theory calculations reveal that the presence of antibonding states below the Fermi level, especially in PbSnS2, contributes to the very low κL. In addition, the calculated phonon dispersions exhibit very soft acoustic phonon branches that give rise to soft lattices and very low speeds of sounds.

2.
Nano Lett ; 24(19): 5816-5823, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38684443

ABSTRACT

We propose an effective strategy to significantly enhance the thermoelectric power factor (PF) of a series of 2D semimetals and semiconductors by driving them toward a topological phase transition (TPT). Employing first-principles calculations with an explicit consideration of electron-phonon interactions, we analyze the electronic transport properties of germanene across the TPT by applying hydrogenation and biaxial strain. We reveal that the nontrivial semimetal phase, hydrogenated germanene with 8% biaxial strain, achieves a considerable 4-fold PF enhancement, attributed to the highly asymmetric electronic structure and semimetallic nature of the nontrivial phase. We extend the strategy to another two representative 2D materials (stanene and HgSe) and observe a similar trend, with a marked 7-fold and 5-fold increase in PF, respectively. The wide selection of functional groups, universal applicability of biaxial strain, and broad spectrum of 2D semimetals and semiconductors render our approach highly promising for designing novel 2D materials with superior thermoelectric performance.

3.
Adv Mater ; 36(6): e2307058, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38010977

ABSTRACT

Achieving glass-like ultra-low thermal conductivity in crystalline solids with high electrical conductivity, a crucial requirement for high-performance thermoelectrics , continues to be a formidable challenge. A careful balance between electrical and thermal transport is essential for optimizing the thermoelectric performance. Despite this inherent trade-off, the experimental realization of an ideal thermoelectric material with a phonon-glass electron-crystal (PGEC) nature has rarely been achieved. Here, PGEC-like AgSbTe2 is demonstrated by tuning the atomic disorder upon Yb doping, which results in an outstanding thermoelectric performance with figure of merit, zT ≈ 2.4 at 573 K. Yb-doping-induced enhanced atomic ordering decreases the overlap between the hole and phonon mean free paths and consequently leads to a PGEC-like transport behavior in AgSbTe2 . A twofold increase in electrical mobility is observed while keeping the position of the Fermi level (EF ) nearly unchanged and corroborates the enhanced crystalline nature of the AgSbTe2 lattice upon Yb doping for electrical transport. The cation-ordered domains, lead to the formation of nanoscale superstructures (≈2 to 4 nm) that strongly scatter heat-carrying phonons, resulting in a temperature-independent glass-like thermal conductivity. The strategy paves the way for realizing high thermoelectric performance in various disordered crystals by making them amorphous to phonons while favoring crystal-like electrical transport.

4.
Proc Natl Acad Sci U S A ; 120(26): e2302541120, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37339199

ABSTRACT

We propose a first-principles model of minimum lattice thermal conductivity ([Formula: see text]) based on a unified theoretical treatment of thermal transport in crystals and glasses. We apply this model to thousands of inorganic compounds and find a universal behavior of [Formula: see text] in crystals in the high-temperature limit: The isotropically averaged [Formula: see text] is independent of structural complexity and bounded within a range from ∼0.1 to ∼2.6 W/(m K), in striking contrast to the conventional phonon gas model which predicts no lower bound. We unveil the underlying physics by showing that for a given parent compound, [Formula: see text] is bounded from below by a value that is approximately insensitive to disorder, but the relative importance of different heat transport channels (phonon gas versus diffuson) depends strongly on the degree of disorder. Moreover, we propose that the diffuson-dominated [Formula: see text] in complex and disordered compounds might be effectively approximated by the phonon gas model for an ordered compound by averaging out disorder and applying phonon unfolding. With these insights, we further bridge the knowledge gap between our model and the well-known Cahill-Watson-Pohl (CWP) model, rationalizing the successes and limitations of the CWP model in the absence of heat transfer mediated by diffusons. Finally, we construct graph network and random forest machine learning models to extend our predictions to all compounds within the Inorganic Crystal Structure Database (ICSD), which were validated against thermoelectric materials possessing experimentally measured ultralow κL. Our work offers a unified understanding of [Formula: see text], which can guide the rational engineering of materials to achieve [Formula: see text].

5.
J Am Chem Soc ; 145(2): 1349-1358, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36595558

ABSTRACT

Chemical bonding present in crystalline solids has a significant impact on how heat moves through a lattice, and with the right chemical tuning, one can achieve extremely low thermal conductivity. The desire for intrinsically low lattice thermal conductivity (κlat) has gained widespread attention in thermoelectrics, in refractories, and nowadays in photovoltaics and optoelectronics. Here we have synthesized a high-quality crystalline ingot of cubic metal halide CuBiI4 and explored its chemical bonding and thermal transport properties. It exhibits an intrinsically ultralow κlat of ∼0.34-0.28 W m-1 K-1 in the temperature range 4-423 K with an Umklapp crystalline peak of 1.82 W m-1 K-1 at 20 K, which is surprisingly lower than other copper-based halide or chalcogenide materials. The crystal orbital Hamilton population analysis shows that antibonding states generated just below the Fermi level (Ef), which arise from robust copper 3d and iodine 5p interactions, cause copper-iodide bond weakening, which leads to reduction of the elastic moduli and softens the lattice, finally to produce extremely low κlat in CuBiI4. The chemical bonding hierarchy with mixed covalent and ionic interactions present in the complex crystal structure generates significant lattice anharmonicity and a low participation ratio in low-lying optical phonon modes originating mostly from localized copper-iodide bond vibrations. We have obtained experimental evidence of these low-lying modes by low-temperature specific heat capacity measurement as well as Raman spectroscopy. The presence of strong p-d antibonding interactions between copper and iodine leads to anharmonic soft crystal lattice which gives rise to low-energy localized optical phonon bands, suppressing the heat-carrying acoustic phonons to steer intrinsically ultralow κlat in CuBiI4.

6.
Nat Commun ; 13(1): 5053, 2022 Aug 27.
Article in English | MEDLINE | ID: mdl-36030224

ABSTRACT

As the periodic atomic arrangement of a crystal is made to a disorder or glassy-amorphous system by destroying the long-range order, lattice thermal conductivity, κL, decreases, and its fundamental characteristics changes. The realization of ultralow and unusual glass-like κL in a crystalline material is challenging but crucial to many applications like thermoelectrics and thermal barrier coatings. Herein, we demonstrate an ultralow (~0.20 W/m·K at room temperature) and glass-like temperature dependence (2-400 K) of κL in a single crystal of layered halide perovskite, Cs3Bi2I6Cl3. Acoustic phonons with low cut-off frequency (20 cm-1) are responsible for the low sound velocity in Cs3Bi2I6Cl3 and make the structure elastically soft. While a strong anharmonicity originates from the low energy and localized rattling-like vibration of Cs atoms, synchrotron X-ray pair-distribution function evidence a local structural distortion in the Bi-halide octahedra and Cl vacancy. The hierarchical chemical bonding and soft vibrations from selective sublattice leading to low κL is intriguing from lattice dynamical perspective as well as have potential applications.

7.
J Am Chem Soc ; 144(30): 13773-13786, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35861788

ABSTRACT

The behavior of 5f electrons in soft ligand environments makes actinides, and especially transuranium chalcogenides, an intriguing class of materials for fundamental studies. Due to the affinity of actinides for oxygen, however, it is a challenge to synthesize actinide chalcogenides using non-metallic reagents. Using the boron chalcogen mixture method, we achieved the synthesis of the transuranium sulfide NaCuNpS3 starting from the oxide reagent, NpO2. Via the same synthetic route, the isostructural composition of NaCuUS3 was synthesized and the material contrasted with NaCuNpS3. Single crystals of the U-analogue, NaCuUS3, were found to undergo an unexpected reversible hydration process to form NaCuUS3·xH2O (x ≈ 1.5). A large combination of techniques was used to fully characterize the structure, hydration process, and electronic structures, specifically a combination of single crystal, powder, high temperature powder X-ray diffraction, extended X-ray absorption fine structure, infrared, and inductively coupled plasma spectroscopies, thermogravimetric analysis, and density functional theory calculations. The outcome of these analyses enabled us to determine the composition of NaCuUS3·xH2O and obtain a structural model that demonstrated the retention of the local structure within the [CuUS3]- layers throughout the hydration-dehydration process. Band structure, density of states, and Bader charge calculations for NaCuUS3, NaCuUS3·xH2O, and NaCuNpS3 along with X-ray absorption near edge structure, UV-vis-NIR, and work function measurements on ACuUS3 (A = Na, K, and Rb) and NaCuUS3·xH2O samples were carried out to demonstrate that electronic properties arise from the [CuTS3]- layers and show surprisingly little dependence on the interlayer distance.

8.
J Am Chem Soc ; 143(40): 16839-16848, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34606248

ABSTRACT

The structural transformation generally occurs from lower symmetric to higher symmetric structure on heating. However, the formation of locally broken asymmetric phases upon warming has been evidenced in PbQ (Q = S, Se, Te), a rare phenomenon called emphanisis, which has significant effect on their thermal transport and thermoelectric properties. (SnSe)0.5(AgSbSe2)0.5 crystallizes in rock-salt cubic average structure, with the three cations occupying the same Wycoff site (4a) and Se in the anion position (Wycoff site, 4b). Using synchrotron X-ray pair distribution function (X-PDF) analysis, herein, we show the gradual deviation of the local structure of (SnSe)0.5(AgSbSe2)0.5 from the overall cubic rock-salt structure with warming, resembling emphanisis. The local structural analysis indicates that Se atoms remain in off-centered position by a magnitude of ∼0.25 Å at 300 K along the [111] direction and the magnitude of this distortion is found to increase with temperature resulting in three short and three long M-Se bonds (M = Sn/Ag/Sb) within the average rock-salt lattice. This hinders phonon propagation and lowers the lattice thermal conductivity (κlat) to 0.49-0.39 W/(m·K) in the 295-725 K range. Analysis of phonons based on density functional theory (DFT) reveals significant soft modes with high anharmonicity which involve localized Ag and Se vibrations primarily. Emphanisis induced low κlat and favorable electronic structure with multiple valence band extrema within close energy concurrently give rise to a promising thermoelectric figure of merit (zT) of 1.05 at 706 K in p-type carrier optimized Ge doped new rock-salt phase of (SnSe)0.5(AgSbSe2)0.5.

9.
J Am Chem Soc ; 142(36): 15595-15603, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32799442

ABSTRACT

Fundamental understanding of the correlation between chemical bonding and lattice dynamics in intrinsically low thermal conductive crystalline solids is important to thermoelectrics, thermal barrier coating, and more recently to photovoltaics. Two-dimensional (2D) layered halide perovskites have recently attracted widespread attention in optoelectronics and solar cells. Here, we discover intrinsically ultralow lattice thermal conductivity (κL) in the single crystal of all-inorganic layered Ruddlesden-Popper (RP) perovskite, Cs2PbI2Cl2, synthesized by the Bridgman method. We have measured the anisotropic κL value of the Cs2PbI2Cl2 single crystal and observed an ultralow κL value of ∼0.37-0.28 W/mK in the temperature range of 295-523 K when measured along the crystallographic c-axis. First-principles density functional theory (DFT) analysis of the phonon spectrum uncovers the presence of soft (frequency ∼18-55 cm-1) optical phonon modes that constitute relatively flat bands due to localized vibrations of Cs and I atoms. A further low energy optical mode exists at ∼12 cm-1 that originates from dynamic octahedral rotation around Pb caused by anharmonic vibration of Cl atoms induced by a 3s2 lone pair. We provide experimental evidence for such low energy optical phonon modes with low-temperature heat capacity and temperature-dependent Raman spectroscopic measurements. The strong anharmonic coupling of the low energy optical modes with acoustic modes causes damping of heat carrying acoustic phonons to ultrasoft frequency (maximum ∼37 cm-1). The combined effect of soft elastic layered structure, abundance of low energy optical phonons, and strong acoustic-optical phonon coupling results in an intrinsically ultralow κL value in the all-inorganic layered RP perovskite Cs2PbI2Cl2.

10.
J Am Chem Soc ; 142(28): 12524-12535, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32628474

ABSTRACT

Defect chemistry is critical to designing high performance thermoelectric materials. In SnTe, the naturally large density of cation vacancies results in excessive hole doping and frustrates the ability to control the thermoelectric properties. Yet, recent work also associates the vacancies with suppressed sound velocities and low lattice thermal conductivity, underscoring the need to understand the interplay between alloying, vacancies, and the transport properties of SnTe. Here, we report solid solutions of SnTe with NaSbTe2 and NaBiTe2 (NaSnmSbTem+2 and NaSnmBiTem+2, respectively) and focus on the impact of the ternary alloys on the cation vacancies and thermoelectric properties. We find introduction of NaSbTe2, but not NaBiTe2, into SnTe nearly doubles the natural concentration of Sn vacancies. Furthermore, DFT calculations suggest that both NaSbTe2 and NaBiTe2 facilitate valence band convergence and simultaneously narrow the band gap. These effects improve the power factors but also make the alloys more prone to detrimental bipolar diffusion. Indeed, the performance of NaSnmBiTem+2 is limited by strong bipolar transport and only exhibits modest maximum ZTs ≈ 0.85 at 900 K. In NaSnmSbTem+2 however, the doubled vacancy concentration raises the charge carrier density and suppresses bipolar diffusion, resulting in superior power factors than those of the Bi-containing analogues. Lastly, NaSbTe2 incorporation lowers the sound velocity of SnTe to give glasslike lattice thermal conductivities. Facilitated by the favorable impacts of band convergence, vacancy-augmented hole concentration, and lattice softening, NaSnmSbTem+2 reaches high ZT ≈ 1.2 at 800-900 K and a competitive average ZTavg of 0.7 over 300-873 K. The difference in ZT between two chemically similar compounds underscores the importance of intrinsic defects in engineering high-performance thermoelectrics.

11.
Phys Rev Lett ; 124(6): 065901, 2020 Feb 14.
Article in English | MEDLINE | ID: mdl-32109101

ABSTRACT

We investigate the microscopic mechanisms of ultralow lattice thermal conductivity (κ_{l}) in Tl_{3}VSe_{4} by combining a first principles density functional theory based framework of anharmonic lattice dynamics with the Peierls-Boltzmann transport equation for phonons. We include contributions of the three- and four-phonon scattering processes to the phonon lifetimes as well as the temperature dependent anharmonic renormalization of phonon energies arising from an unusually strong quartic anharmonicity in Tl_{3}VSe_{4}. In contrast to a recent report by Mukhopadhyay et al. [Science 360, 1455 (2018)SCIEAS0036-807510.1126/science.aar8072] which suggested that a significant contribution to κ_{l} arises from random walks among uncorrelated oscillators, we show that particlelike propagation of phonon excitations can successfully explain the experimentally observed ultralow κ_{l}. Our findings are further supported by explicit calculations of the off-diagonal terms of the heat current operator, which are found to be small and indicate that wavelike tunneling of heat carrying vibrations is of minor importance. Our results (i) resolve the discrepancy between the theoretical and experimental κ_{l}, (ii) offer new insights into the minimum κ_{l} achievable in Tl_{3}VSe_{4}, and (iii) highlight the importance of high order anharmonicity in low-κ_{l} systems. The methodology demonstrated here may be used to resolve the discrepancies between the experimentally measured and the theoretically calculated κ_{l} in skutterides and perovskites, as well as to understand the glasslike κ_{l} in complex crystals with strong anharmonicity, leading towards the goal of rational design of new materials.

12.
Angew Chem Int Ed Engl ; 59(12): 4822-4829, 2020 Mar 16.
Article in English | MEDLINE | ID: mdl-31970889

ABSTRACT

A challenge in thermoelectrics is to achieve intrinsically low thermal conductivity in crystalline solids while maintaining a high carrier mobility (µ). Topological quantum materials, such as the topological insulator (TI) or topological crystalline insulator (TCI) can exhibit high µ. Weak topological insulators (WTI) are of interest because of their layered hetero-structural nature which has a low lattice thermal conductivity (κlat ). BiTe, a unique member of the (Bi2 )m (Bi2 Te3 )n homologous series (m:n=1:2), has both the quantum states, TCI and WTI, which is distinct from the conventional strong TI, Bi2 Te3 (where m:n=0:1). Herein, we report intrinsically low κlat of 0.47-0.8 W m-1 K-1 in the 300-650 K range in BiTe resulting from low energy optical phonon branches which originate primarily from the localized vibrations of Bi bilayer. It has high µ≈516 cm2 V-1 s-1 and 707 cm2 V-1 s-1 along parallel and perpendicular to the spark plasma sintering (SPS) directions, respectively, at room temperature.

13.
J Am Chem Soc ; 141(48): 19130-19137, 2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31697089

ABSTRACT

Dirac and Weyl semimetals host exotic quasiparticles with unconventional transport properties, such as high magnetoresistance and carrier mobility. Recent years have witnessed a huge number of newly predicted topological semimetals from existing databases; however, experimental verification often lags behind such predictions. Common reasons are synthetic difficulties or the stability of predicted phases. Here, we report the synthesis of the type-II Dirac semimetal Ir2In8S, an air-stable compound with a new structure type. This material has two Dirac crossings in its electronic structure along the Γ-Z direction of the Brillouin zone. We further show that Ir2In8S has a high electron carrier mobility of ∼10 000 cm2/(V s) at 1.8 K and a large, nonsaturating transverse magnetoresistance of ∼6000% at 3.34 K in a 14 T applied field. Shubnikov de-Haas oscillations reveal several small Fermi pockets and the possibility of a nontrivial Berry phase. With its facile crystal growth, novel structure type, and striking electronic structure, Ir2In8S introduces a new material system to study topological semimetals and enable advances in the field of topological materials.

14.
Chem Sci ; 10(18): 4905-4913, 2019 May 14.
Article in English | MEDLINE | ID: mdl-31183040

ABSTRACT

Efficiency in generation and utilization of energy is highly dependent on materials that have the ability to amplify or hinder thermal conduction processes. A comprehensive understanding of the relationship between chemical bonding and structure impacting lattice waves (phonons) is essential to furnish compounds with ultralow lattice thermal conductivity (κ lat) for important applications such as thermoelectrics. Here, we demonstrate that the n-type rock-salt AgPbBiSe3 exhibits an ultra-low κ lat of 0.5-0.4 W m-1 K-1 in the 290-820 K temperature range. We present detailed analysis to uncover the fundamental origin of such a low κ lat. First-principles calculations augmented with low temperature heat capacity measurements and the experimentally determined synchrotron X-ray pair distribution function (PDF) reveal bonding heterogeneity within the lattice and lone pair induced lattice anharmonicity. Both of these factors enhance the phonon-phonon scattering, and are thereby responsible for the suppressed κ lat. Further optimization of the thermoelectric properties was performed by aliovalent halide doping, and a thermoelectric figure of merit (zT) of 0.8 at 814 K was achieved for AgPbBiSe2.97I0.03 which is remarkable among n-type Te free thermoelectrics.

15.
J Am Chem Soc ; 140(17): 5866-5872, 2018 05 02.
Article in English | MEDLINE | ID: mdl-29641193

ABSTRACT

Realization of high thermoelectric performance in n-type semiconductors is of imperative need on account of the dearth of efficient n-type thermoelectric materials compared to the p-type counterpart. Moreover, development of efficient thermoelectric materials based on Te-free compounds is desirable because of the scarcity of Te in the Earth's crust. Herein, we report the intrinsic ultralow thermal conductivity and high thermoelectric performance near room temperature in n-type BiSe, a Te-free solid, which recently has emerged as a weak topological insulator. BiSe possesses a layered structure consisting of a bismuth bilayer (Bi2) sandwiched between two Bi2Se3 quintuple layers [Se-Bi-Se-Bi-Se], resembling natural heterostructure. High thermoelectric performance of BiSe is realized through the ultralow lattice thermal conductivity (κlat of ∼0.6 W/mK at 300 K), which is significantly lower than that of Bi2Se3 (κlat of ∼1.8 W/mK at 300 K), although both of them belong to the same layered homologous family (Bi2) m(Bi2Se3) n. Phonon dispersion calculated from first-principles and the experimental low-temperature specific heat data indicate that soft localized vibrations of bismuth bilayer in BiSe are responsible for its ultralow κlat. These low energy optical phonon branches couple strongly with the heat carrying acoustic phonons, and consequently suppress the phonon mean free path leading to low κlat. Further optimization of thermoelectric properties of BiSe through Sb substitution and spark plasma sintering (SPS) results in high ZT ∼ 0.8 at 425 K along the pressing direction, which is indeed remarkable among Te-free n-type thermoelectric materials near room temperature.

16.
J Phys Condens Matter ; 30(18): 185401, 2018 May 10.
Article in English | MEDLINE | ID: mdl-29528300

ABSTRACT

High pressure Raman, resistivity and synchrotron x-ray diffraction studies on Weyl semimetals NbAs and TaAs have been carried out along with density functional theoretical (DFT) analysis to explain pressure induced structural and electronic topological phase transitions. The frequencies of first order Raman modes harden with increasing pressure, exhibiting a slope change at [Formula: see text] GPa for NbAs and [Formula: see text] GPa for TaAs. The resistivities of NbAs and TaAs exhibit a minimum at pressures close to these transition pressures and also a change in the bulk modulus is observed. Our first-principles calculations reveal that the transition is associated with an electronic Lifshitz transition at [Formula: see text] for NbAs while it is a structural phase transition from body centered tetragonal to hexagonal phase at [Formula: see text] for TaAs. Further, our DFT calculations show a structural phase transition at 24 GPa from body centered tetragonal phase to hexagonal phase.

17.
Chemphyschem ; 18(17): 2322-2327, 2017 Sep 06.
Article in English | MEDLINE | ID: mdl-28683188

ABSTRACT

As one of the major areas of interest in catalysis revolves around 2D materials based on molybdenum sulfide, we have examined the catalytic properties of bismuth selenides and tellurides, which are among the first chalcogenides to be proven as topological insulators (TIs). We find significant photochemical H2 evolution activity with these TIs as catalysts. H2 evolution increases drastically in nanosheets of Bi2 Te3 compared to single crystals. First-principles calculations show that due to the topology, surface states participate and promote the hydrogen evolution.

18.
J Am Chem Soc ; 139(12): 4350-4353, 2017 03 29.
Article in English | MEDLINE | ID: mdl-28263613

ABSTRACT

Understanding the nature of chemical bonding and lattice dynamics together with their influence on phonon-transport is essential to explore and design crystalline solids with ultralow thermal conductivity for various applications including thermoelectrics. TlInTe2, with interlocked rigid and weakly bound substructures, exhibits lattice thermal conductivity as low as ca. 0.5 W/mK near room temperature, owing to rattling dynamics of weakly bound Tl cations. Large displacements of Tl cations along the c-axis, driven by electrostatic repulsion between localized electron clouds on Tl and Te ions, are akin to those of rattling guests in caged-systems. Heat capacity of TlInTe2 exhibits a broad peak at low-temperatures due to contribution from Tl-induced low-frequency Einstein modes as also evidenced from THz time domain spectroscopy. First-principles calculations reveal a strong coupling between large-amplitude coherent optic vibrations of Tl-rattlers along the c-axis, and acoustic phonons that likely causes the low lattice thermal conductivity in TlInTe2.

19.
Angew Chem Int Ed Engl ; 55(27): 7792-6, 2016 06 27.
Article in English | MEDLINE | ID: mdl-26918541

ABSTRACT

Understanding the origin of intrinsically low thermal conductivity is fundamentally important to the development of high-performance thermoelectric materials, which can convert waste-heat into electricity. Herein, we report an ultralow lattice thermal conductivity (ca. 0.4 W m(-1) K(-1) ) in mixed valent InTe (that is, In(+) In(3+) Te2 ), which exhibits an intrinsic bonding asymmetry with coexistent covalent and ionic substructures. The phonon dispersion of InTe exhibits, along with low-energy flat branches, weak instabilities associated with the rattling vibrations of In(+) atoms along the columnar ionic substructure. These weakly unstable phonons originate from the 5s(2) lone pair of the In(+) atom and are strongly anharmonic, which scatter the heat-carrying acoustic phonons through strong anharmonic phonon-phonon interactions, as evident in anomalously high mode Grüneisen parameters. A maximum thermoelectric figure of merit (z T) of about 0.9 is achieved at 600 K for the 0.3 mol % In-deficient sample, making InTe a promising material for mid-temperature thermoelectric applications.

20.
J Phys Condens Matter ; 28(10): 105401, 2016 Mar 16.
Article in English | MEDLINE | ID: mdl-26881905

ABSTRACT

In recent years, a low pressure transition around P3 GPa exhibited by the A2B3-type 3D topological insulators is attributed to an electronic topological transition (ETT) for which there is no direct evidence either from theory or experiments. We address this phase transition and other transitions at higher pressure in bismuth selenide (Bi2Se3) using Raman spectroscopy at pressure up to 26.2 GPa. We see clear Raman signatures of an isostructural phase transition at P2.4 GPa followed by structural transitions at ∼ 10 GPa and 16 GPa. First-principles calculations reveal anomalously sharp changes in the structural parameters like the internal angle of the rhombohedral unit cell with a minimum in the c/a ratio near P3 GPa. While our calculations reveal the associated anomalies in vibrational frequencies and electronic bandgap, the calculated Z2 invariant and Dirac conical surface electronic structure remain unchanged, showing that there is no change in the electronic topology at the lowest pressure transition.

SELECTION OF CITATIONS
SEARCH DETAIL
...