Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(24): 65250-65266, 2023 May.
Article in English | MEDLINE | ID: mdl-37081367

ABSTRACT

Polyether sulfone (PES)-based thin-film nanofiltration (TFN) membranes embedded with ferric hydroxide (FeIII(OH)x) functionalized graphene oxide (GO) nanoparticles were fabricated through interfacial polymerization for a generalized application in removal of a plethora of anionic and toxic water contaminants. Following the most relevant characterization, the newly synthesized membranes were fitted in a novel flat sheet cross-flow module, for experimental investigation on purification of live contaminated groundwater collected from different affected areas. The separation performances of the membranes in the flat sheet cross-flow module demonstrated that GOF membranes had higher selectivity for monovalent and divalent salt rejections than pristine GO membranes. Furthermore, both membranes were tested for simultaneously removing widely occurring hazardous ions of heavy metals and metalloids in groundwater, such as arsenic, selenium, chromium, and fluoride. Compared to the pristine GO and the reported membranes in the literature, the GOF membrane exhibited remarkable performance in terms of rejection efficiency (Cr (VI): 97.2%, Se (IV): 96.6%, As(V): 96.3%, F- 88.4%) and sustained flux of 184 LMH (Lm-2 h-1) at an optimum transmembrane pressure of 16 bar. The investigated membrane module equipped with the GOF membrane proved to be a low-cost system with higher anionic rejection and sustained high flux at a comprehensive pH range, as evident over long hours of study vis-à-vis reported systems.


Subject(s)
Drinking Water , Graphite , Nanocomposites , Graphite/chemistry , Ferric Compounds , Nanocomposites/chemistry
2.
Environ Sci Pollut Res Int ; 25(17): 16579-16589, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29594887

ABSTRACT

A novel graphene-based nanocomposite membrane was synthesized by interfacial polymerization (IP) through chemical bonding of the graphene oxide (GO) layer to polyethersulfone surface. Detailed characterization of the composite membrane through AFM, SEM, ATR-FTIR, XRD analysis, and Raman spectroscopy indicates strong potential of the membrane in highly selective removal of the toxic contaminants like arsenic and fluoride while permeating the essential minerals like calcium and magnesium. This makes the membrane suitable for production of safe drinking water from contaminated water. The membrane applied in a flat-sheet cross-flow module succeeded in removal of more than 98% arsenic and around 80% fluoride from contaminated water while selectively retaining the useful calcium and magnesium minerals in drinking water. A sustained pure water flux of around 150 LMH (liter per square meter per hour) during operation over long hours (> 150 h) with only 3-5% drop in flux indicates antifouling character of the membrane module.


Subject(s)
Arsenic/analysis , Fluorides/analysis , Graphite/chemistry , Oxides/chemistry , Water Pollutants, Chemical/analysis , Membranes, Artificial , Nanocomposites , Water Pollutants, Chemical/chemistry
3.
Environ Sci Pollut Res Int ; 22(15): 11401-11, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25813635

ABSTRACT

For purifying fluoride-contaminated water, a new forward osmosis scheme in horizontal flat-sheet cross flow module was designed and investigated. Effects of pressure, cross flow rate, draw solution and alignment of membrane module on separation and flux were studied. Concentration polarization and reverse salt diffusion got significantly reduced in the new hydrodynamic regime. This resulted in less membrane fouling, better solute separation and higher pure water flux than in a conventional module. The entire scheme was completed in two stages-an upstream forward osmosis for separating pure water from contaminated water and a downstream nanofiltration operation for continuous recovery and recycle of draw solute. Synchronization of these two stages of operation resulted in a continuous, steady-state process. From a set of commercial membranes, two polyamide composite membranes were screened out for the upstream and downstream filtrations. A 0.3-M NaCl solution was found to be the best one for forward osmosis draw solution. Potable water with less than 1% residual fluoride could be produced at a high flux of 60-62 L m(-2) h(-1) whereas more than 99% draw solute could be recovered and recycled in the downstream nanofiltration stage from where flux was 62-65 L m(-2) h(-1).


Subject(s)
Fluorides/isolation & purification , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Diffusion , Filtration , Membranes, Artificial , Osmosis , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL
...