Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Sci Rep ; 14(1): 15690, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977801

ABSTRACT

Cd(II) is a potentially toxic heavy metal having carcinogenic activity. It is becoming widespread in the soil and groundwater by various natural and anthropological activities. This is inviting its immediate removal. The present study is aimed at developing a Cd(II) resistant strain isolated from contaminated water body and testing its potency in biological remediation of Cd(II) from aqueous environment. The developed resistant strain was characterized by SEM, FESEM, TEM, EDAX, FT-IR, Raman Spectral, XRD and XPS analysis. The results depict considerable morphological changes had taken place on the cell surface and interaction of Cd(II) with the surface exposed functional groups along with intracellular accumulation. Molecular contribution of critical cell wall component has been evaluated. The developed resistant strain had undergone Cd(II) biosorption study by employing adsorption isotherms and kinetic modeling. Langmuir model best fitted the Cd(II) biosorption data compared to the Freundlich one. Cd(II) biosorption by the strain followed a pseudo second order kinetics. The physical parameters affecting biosorption were also optimized by employing response surface methodology using central composite design. The results depict remarkable removal capacity 75.682 ± 0.002% of Cd(II) by the developed resistant strain from contaminated aqueous medium using 500 ppm of Cd(II). Quantitatively, biosorption for Cd(II) by the newly developed resistant strain has been increased significantly (p < 0.0001) from 4.36 ppm (non-resistant strain) to 378.41 ppm (resistant strain). It has also shown quite effective desorption capacity 87.527 ± 0.023% at the first desorption cycle and can be reused effectively as a successful Cd(II) desorbent up to five cycles. The results suggest that the strain has considerable withstanding capacity of Cd(II) stress and can be employed effectively in the Cd(II) bioremediation from wastewater.


Subject(s)
Biodegradation, Environmental , Cadmium , Candida tropicalis , Wastewater , Water Pollutants, Chemical , Water Purification , Cadmium/metabolism , Wastewater/microbiology , Wastewater/chemistry , Water Purification/methods , Water Pollutants, Chemical/metabolism , Candida tropicalis/metabolism , Adsorption , Kinetics , Spectroscopy, Fourier Transform Infrared
2.
Eur J Med Chem ; 270: 116377, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38581731

ABSTRACT

Evading the cellular apoptosis mechanism by modulating multiple pathways poses a sturdy barrier to effective chemotherapy. Cancer cell adeptly resists the apoptosis signaling pathway by regulating anti and pro-apoptotic proteins to escape cell death. Nevertheless, bypassing the apoptotic pathway through necroptosis, an alternative programmed cell death process, maybe a potential therapeutic modality for apoptosis-resistant cells. However, synthetic mono-quinoxaline-based intercalator-induced cellular necroptosis as an anti-cancer perspective remains under-explored. To address this concern, we undertook the design and synthesis of quinoxaline-based small molecules (3a-3l). Our approach involved enhancing the π-surface of the mandatory benzyl moiety to augment its ability to induce DNA structural alteration via intercalation, thereby promoting cytotoxicity across various cancer cell lines (HCT116, HT-29, and HeLa). Notably, the potent compound 3a demonstrated the capacity to induce DNA damage in cancer cells, leading to the induction of ZBP1-mediated necroptosis in the RIP3-expressed cell line (HT-29), where Z-VAD effectively blocked apoptosis-mediated cell death. Interestingly, we observed that 3a induced RIP3-driven necroptosis in combination with DNA hypomethylating agents, even in the RIP3-silenced cell lines (HeLa and HCT116). Overall, our synthesized compound 3a emerged as a promising candidate against various cancers, particularly in apoptosis-compromised cells, through the induction of necroptosis.


Subject(s)
Necroptosis , Neoplasms , Humans , Quinoxalines/pharmacology , Apoptosis , HT29 Cells , DNA/pharmacology , Necrosis/chemically induced , Protein Kinases/metabolism
3.
Chem Sci ; 13(45): 13403-13408, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36507156

ABSTRACT

Stereoselective total synthesis of the structurally intriguing polyketide natural product thailandamide lactone was accomplished, and done so using a convergent approach for the first time to the best of our knowledge. The key features of this synthesis included use of a Crimmins acetate aldol reaction, Evans methylation, Urpi acetal aldol reaction, Sharpless asymmetric epoxidation and subsequent γ-lactonization for the installation of six asymmetric centers and the use of the Negishi reaction, Julia-Kocienski olefination, cross metathesis, HWE olefination and intermolecular Heck coupling for construction of a variety of unsaturated linkages. Pd(i)-based Heck coupling was introduced, for the first time to the best of our knowledge, quite efficiently to couple the major eastern and sensitive western segments of the molecule. The antibacterial activity of thailandamide lactone was also evaluated.

4.
J Bacteriol ; 204(8): e0014422, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35862756

ABSTRACT

The bacterial flagellar type III secretion system (fT3SS) is a suite of membrane-embedded and cytoplasmic proteins responsible for building the flagellar motility machinery. Homologous nonflagellar (NF-T3SS) proteins form the injectisome machinery that bacteria use to deliver effector proteins into eukaryotic cells, and other family members were recently reported to be involved in the formation of membrane nanotubes. Here, we describe a novel, evolutionarily widespread, hat-shaped structure embedded in the inner membranes of bacteria, of yet-unidentified function, that is present in species containing fT3SS. Mutant analysis suggests a relationship between this novel structure and the fT3SS, but not the NF-T3SS. While the function of this novel structure remains unknown, we hypothesize that either some of the fT3SS proteins assemble within the hat-like structure, perhaps including the fT3SS core complex, or that fT3SS components regulate other proteins that form part of this novel structure. IMPORTANCE The type III secretion system (T3SS) is a fascinating suite of proteins involved in building diverse macromolecular systems, including the bacterial flagellar motility machine, the injectisome machinery that bacteria use to inject effector proteins into host cells, and probably membrane nanotubes which connect bacterial cells. Here, we accidentally discovered a novel inner membrane-associated complex related to the flagellar T3SS. Examining our lab database, which is comprised of more than 40,000 cryo-tomograms of dozens of species, we discovered that this novel structure is both ubiquitous and ancient, being present in highly divergent classes of bacteria. Discovering a novel, widespread structure related to what are among the best-studied molecular machines in bacteria will open new venues for research aiming at understanding the function and evolution of T3SS proteins.


Subject(s)
Flagella , Type III Secretion Systems , Bacteria/metabolism , Bacterial Proteins/metabolism , Bacterial Structures , Flagella/metabolism , Type III Secretion Systems/genetics , Type III Secretion Systems/metabolism
5.
mSystems ; 7(3): e0020222, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35477304

ABSTRACT

The cell envelope of Gram-negative bacteria is a complex structure, essential for bacterial survival and for resistance to many antibiotics. Channels that cross the bacterial envelope and the host cell membrane form secretion systems that are activated upon attachment to host, enabling bacteria to inject effector molecules into the host cell, required for bacterium-host interaction. The type III secretion system (T3SS) is critical for the virulence of several pathogenic bacteria, including enteropathogenic Escherichia coli (EPEC). EPEC T3SS activation is associated with repression of carbon storage regulator (CsrA), resulting in gene expression remodeling, which is known to affect EPEC central carbon metabolism and contributes to the adaptation to a cell-adherent lifestyle in a poorly understood manner. We reasoned that the changes in the bacterial envelope upon attachment to the host and the activation of a secretion system may involve a modification of the lipid composition of bacterial envelope. Accordingly, we performed a lipidomics analysis on mutant strains that simulate T3SS activation. We saw a shift in glycerophospholipid metabolism toward the formation of lysophospholipids, attributed to corresponding upregulation of the phospholipase gene pldA and the acyltransferase gene ygiH upon T3SS activation in EPEC. We also detected a shift from menaquinones and ubiquinones to undecaprenyl lipids, concomitant with abnormal synthesis of O antigen. The remodeling of lipid metabolism is mediated by CsrA and associated with increased bacterial cell size and zeta potential and a corresponding alteration in EPEC permeability to vancomycin, increasing the sensitivity of T3SS-activated strains and of adherent wild-type EPEC to the antibiotic. IMPORTANCE The characterization of EPEC membrane lipid metabolism upon attachment to the host is an important step toward a better understanding the shift of EPEC, a notable human pathogen, from a planktonic to adherent lifestyle. It may also apply to other pathogenic bacteria that use this secretion system. We predict that upon attachment to host cells, the lipid remodeling upon T3SS activation contributes to bacterial fitness and promotes host colonization, and we show that it is associated with increased cell permeability and higher sensitivity to vancomycin. To the best of our knowledge, this is the first demonstration of a bacterial lipid remodeling due to activation of a secretion system.


Subject(s)
Enteropathogenic Escherichia coli , Escherichia coli Proteins , Humans , Enteropathogenic Escherichia coli/genetics , Type III Secretion Systems/genetics , Vancomycin/metabolism , Escherichia coli Proteins/genetics , Lipids , Repressor Proteins/metabolism , RNA-Binding Proteins/metabolism
6.
ACS Omega ; 7(8): 6488-6501, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35252645

ABSTRACT

The elevated level of endogenous oxidative DNA damage and spontaneous deamination of DNA bases in cancer cells substantially increase the abasic sites in DNA via base excision repairs (BERs). Thus, the predominant BER pathway is a favorable target for cancer therapy. Interestingly, elevated levels of glutathione (GSH) in certain cancer cells, such as colon cancer, are associated with acquired resistance to several chemotherapeutic agents, which increase the difficulty for the treatment of cancer. Here, we have reported an ideal nitro group-containing monoquinoxaline DNA intercalator (1d), which is reduced into a fluorescent quinoxaline amine (1e) in the presence of GSH; concurrently, 1e (∼100 nM concentration) selectively causes the in vitro cleavage of abasic sites in DNA. 1e also binds to the tetrahydrofuran analogue of the abasic site in the nanomolar to low micromolar range depending on the nucleotide sequence opposite to the abasic site and also induces a structural change in abasic DNA. Furthermore, the amine compound (1e) augments the response of the specific bifunctional alkylating drug chlorambucil at a much lower concentration in the human colorectal carcinoma cell (HCT-116), and their combination shows a potential strategy for targeted therapy. Alone or in combination, 1d and 1e lead to a cascade of cellular events such as induction of DNA double-stranded breaks and cell arrest at G0/G1 and G2/M phases, eventually leading to apoptotic cell death in HCT-116 cells. Hence, the outcome of this study provides a definitive approach that will help optimize the therapeutic applications for targeting the abasic site in cancer cells.

7.
Front Immunol ; 13: 933347, 2022.
Article in English | MEDLINE | ID: mdl-36798518

ABSTRACT

Intramuscularly administered vaccines stimulate robust serum neutralizing antibodies, yet they are often less competent in eliciting sustainable "sterilizing immunity" at the mucosal level. Our study uncovers a strong temporary neutralizing mucosal component of immunity, emanating from intramuscular administration of an mRNA vaccine. We show that saliva of BNT162b2 vaccinees contains temporary IgA targeting the receptor-binding domain (RBD) of severe acute respiratory syndrome coronavirus-2 spike protein and demonstrate that these IgAs mediate neutralization. RBD-targeting IgAs were found to associate with the secretory component, indicating their bona fide transcytotic origin and their polymeric multivalent nature. The mechanistic understanding of the high neutralizing activity provided by mucosal IgA, acting at the first line of defense, will advance vaccination design and surveillance principles and may point to novel treatment approaches and new routes of vaccine administration and boosting.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , RNA, Messenger , Immunoglobulin A
8.
Eur J Med Chem ; 229: 113995, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-34802835

ABSTRACT

Cooperative disruption of Watson-Crick hydrogen bonds, as well as base-destacking, is shown to be triggered by a quinoxaline-based small molecule consisting of an N,N-dimethylaminopropyl tether, and a para-substituted benzyl moiety. This events lead to superstructure formation and DNA condensation as evident from biophysical experiments and classical molecular dynamics simulations. The DNA superstructure formation by mono-quinoxaline derivatives is highly entropically favored and predominantly driven by hydrophobic interactions. Furthermore, oversupercoiling of DNA and base-destacking cumulatively induces histone eviction from in-vitro assembled nucleosomes at lower micromolar concentrations implicating biological relevance. The DNA structural modulation and histone eviction capacity of the benzyl para-substituents are in the order: -I > -CF3> -Br > -Me > -OMe > -OH, which is largely guided by the polarity of benzyl para-substituent and the resulting molecular topology. The most hydrophobic derivative 3c with para-iodo benzyl moiety causes maximal disruption of base pairing and generation of superstructures. Both these events gradually diminish as the polarity of the benzyl para-substituent increases. On the other hand, quinoxaline derivatives having heterocyclic ring instead of benzyl ring, or in the absence of N,N-dimethylamino head-group, is incapable of inducing any DNA structural change and histone eviction. Further, the quinoxaline compounds displayed potent anticancer activities against different cancer cell lines which directly correlates with the hydrophobic effects of the benzyl para-substituents. Overall, the present study provides new insights into the mechanistic approach of DNA structural modulation driven histone eviction guided by the hydrophobicity of synthesized compounds leading to cellular cytotoxicity towards cancer cells.


Subject(s)
DNA/chemistry , Histones/metabolism , Quinoxalines/chemistry , Cell Line , Cell Survival/drug effects , DNA/metabolism , DNA Damage/drug effects , Drug Design , Humans , Hydrogen Bonding , Molecular Conformation , Quantum Theory , Quinoxalines/metabolism , Quinoxalines/pharmacology , Thermodynamics
9.
mBio ; 11(5)2020 09 15.
Article in English | MEDLINE | ID: mdl-32934081

ABSTRACT

The ability of diarrheagenic bacterial pathogens, such as enteropathogenic Escherichia coli (EPEC), to modulate the activity of mitogen-activated protein kinases (MAPKs) and cell survival has been suggested to benefit bacterial colonization and infection. However, our understanding of the mechanisms by which EPEC modulate these functions is incomplete. In this study, we show that the EPEC type III secreted effector Map stimulates the sheddase activity of the disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) and the ERK and p38 MAPK signaling cascades. Remarkably, all these activities were dependent upon the ability of Map to target host mitochondria, mainly via its mitochondrial toxicity region (MTR). Map targeting of mitochondria disrupted the mitochondrial membrane potential, causing extrusion of mitochondrial Ca2+ into the host cell cytoplasm. We also found that Map targeting of mitochondria is essential for triggering host cell apoptosis. Based on these findings, we propose a model whereby Map imported into mitochondria causes mitochondrial dysfunction and Ca2+ efflux into the host cytoplasm. Since Ca2+ has been reported to promote ADAM10 activation, the acute elevation of Ca2+ in the cytoplasm may stimulate the ADAM10 sheddase activity, resulting in the release of epidermal growth factors that stimulate the ERK signaling cascade. As p38 activity is also Ca2+ sensitive, elevation in cytoplasmic Ca2+ may independently also activate p38. We hypothesize that Map-dependent MAPK activation, combined with Map-mediated mitochondrial dysfunction, evokes mitochondrial host cell apoptosis, potentially contributing to EPEC colonization and infection of the gut.IMPORTANCE Enteropathogenic E. coli (EPEC) is an important human diarrhea-causing bacterium. The pathogenic effects of EPEC largely depend upon its ability to inject a series of proteins, termed effectors, into the host cells. One such effector is the mitochondrion-associated protein (Map). Map has been shown to induce actin-rich projections (i.e., filopodia) on the infected cell surface and activate a Rho GTPase enzyme termed Cdc42. Nonetheless, although most injected Map localizes to host mitochondria, its functions in the mitochondria remain unknown. Here, we show that Map targeting of mitochondria stimulates the disruption of mitochondrial membrane potential to induce Ca2+ efflux into the host cytoplasm. The efflux stimulates the activity of a protein termed ADAM10, which induces activation of a mitogen-activated protein kinase cascade leading to host cell apoptosis. As apoptosis plays a central role in host-pathogen interactions, our findings provide novel insights into the functions of mitochondrial Map in promoting the EPEC disease.


Subject(s)
ADAM10 Protein/metabolism , Amyloid Precursor Protein Secretases/metabolism , Apoptosis , Calcium/metabolism , Enteropathogenic Escherichia coli/metabolism , Host-Pathogen Interactions , Membrane Proteins/metabolism , Mitochondria/physiology , Mitogen-Activated Protein Kinases/metabolism , ADAM10 Protein/genetics , Amyloid Precursor Protein Secretases/genetics , Biological Transport , Caco-2 Cells , Enteropathogenic Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , HeLa Cells , Humans , Membrane Proteins/genetics , Mitogen-Activated Protein Kinases/genetics , Protein Transport , Signal Transduction
10.
Chem Commun (Camb) ; 55(93): 14027-14030, 2019 Nov 19.
Article in English | MEDLINE | ID: mdl-31690898

ABSTRACT

RNA-biased small molecules with a monoquinoxaline core target the L-shaped structure of subdomain IIa of Hepatitis C virus internal ribosome entry site (IRES) RNA in proximity to the Mg2+ binding site. The binding event leads to the destacking of RNA bases, resulting in the inhibition of IRES-mediated translation and HCV RNA replication.


Subject(s)
Antiviral Agents/pharmacology , Hepacivirus/drug effects , Internal Ribosome Entry Sites/drug effects , Quinoxalines/pharmacology , RNA, Viral/drug effects , Antiviral Agents/chemistry , Hepacivirus/genetics , Humans , Internal Ribosome Entry Sites/genetics , Molecular Conformation , Quinoxalines/chemistry , RNA, Viral/genetics , Virus Replication/drug effects
11.
J Med Chem ; 62(17): 7840-7856, 2019 09 12.
Article in English | MEDLINE | ID: mdl-31390524

ABSTRACT

Structural integrity of the bacterial genome plays an important role in bacterial survival. Cellular consequences of an intolerable amount of change in the DNA structure are not well understood in bacteria. Here we have stated that binding of synthetic 6-nitroquinoxaline derivatives with DNA led to change in its global structure, subsequently culminating with over-supercoiled form through in-path intermediates. This structural change results in induction of programmed cell death like physiological hallmarks, which is dependent on substitution driven structural modulation properties of the scaffold. A sublethal dose of a representative derivative, 3a, significantly inhibits DNA synthesis, produces fragmented nucleoids, and alters membrane architecture. We have also shown that exposure to the compound changes the native morphology of Staphylococcus aureus cells and significantly disrupts preformed biofilms. Thus, our study gives new insight into bacterial responses to local or global DNA structural changes induced by 6-nitroquinoxaline small molecules.


Subject(s)
Anti-Bacterial Agents/pharmacology , DNA, Bacterial/drug effects , Nitro Compounds/pharmacology , Quinoxalines/pharmacology , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , DNA, Bacterial/chemistry , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Molecular Structure , Nitro Compounds/chemical synthesis , Nitro Compounds/chemistry , Quinoxalines/chemical synthesis , Quinoxalines/chemistry , Staphylococcus aureus/cytology , Structure-Activity Relationship
12.
PLoS Pathog ; 15(6): e1007851, 2019 06.
Article in English | MEDLINE | ID: mdl-31242273

ABSTRACT

Enteropathogenic E. coli (EPEC) is an extracellular diarrheagenic human pathogen which infects the apical plasma membrane of the small intestinal enterocytes. EPEC utilizes a type III secretion system to translocate bacterial effector proteins into its epithelial hosts. This activity, which subverts numerous signaling and membrane trafficking pathways in the infected cells, is thought to contribute to pathogen virulence. The molecular and cellular mechanisms underlying these events are not well understood. We investigated the mode by which EPEC effectors hijack endosomes to modulate endocytosis, recycling and transcytosis in epithelial host cells. To this end, we developed a flow cytometry-based assay and imaging techniques to track endosomal dynamics and membrane cargo trafficking in the infected cells. We show that type-III secreted components prompt the recruitment of clathrin (clathrin and AP2), early (Rab5a and EEA1) and recycling (Rab4a, Rab11a, Rab11b, FIP2, Myo5b) endocytic machineries to peripheral plasma membrane infection sites. Protein cargoes, e.g. transferrin receptors, ß1 integrins and aquaporins, which exploit the endocytic pathways mediated by these machineries, were also found to be recruited to these sites. Moreover, the endosomes and cargo recruitment to infection sites correlated with an increase in cargo endocytic turnover (i.e. endocytosis and recycling) and transcytosis to the infected plasma membrane. The hijacking of endosomes and associated endocytic activities depended on the translocated EspF and Map effectors in non-polarized epithelial cells, and mostly on EspF in polarized epithelial cells. These data suggest a model whereby EPEC effectors hijack endosomal recycling mechanisms to mislocalize and concentrate host plasma membrane proteins in endosomes and in the apically infected plasma membrane. We hypothesize that these activities contribute to bacterial colonization and virulence.


Subject(s)
Cell Membrane/metabolism , Endocytosis , Endosomes/metabolism , Enteropathogenic Escherichia coli/metabolism , Escherichia coli Infections/metabolism , Membrane Proteins/metabolism , Cell Membrane/microbiology , Cell Membrane/pathology , Endosomes/microbiology , Endosomes/pathology , Enteropathogenic Escherichia coli/pathogenicity , Escherichia coli Infections/pathology , HeLa Cells , Humans
13.
Cell ; 177(3): 683-696.e18, 2019 04 18.
Article in English | MEDLINE | ID: mdl-30929902

ABSTRACT

Microbiota and intestinal epithelium restrict pathogen growth by rapid nutrient consumption. We investigated how pathogens circumvent this obstacle to colonize the host. Utilizing enteropathogenic E. coli (EPEC), we show that host-attached bacteria obtain nutrients from infected host cell in a process we termed host nutrient extraction (HNE). We identified an inner-membrane protein complex, henceforth termed CORE, as necessary and sufficient for HNE. The CORE is a key component of the EPEC injectisome, however, here we show that it supports the formation of an alternative structure, composed of membranous nanotubes, protruding from the EPEC surface to directly contact the host. The injectisome and flagellum are evolutionarily related, both containing conserved COREs. Remarkably, CORE complexes of diverse ancestries, including distant flagellar COREs, could rescue HNE capacity of EPEC lacking its native CORE. Our results support the notion that HNE is a widespread virulence strategy, enabling pathogens to thrive in competitive niches.


Subject(s)
Enteropathogenic Escherichia coli/pathogenicity , Escherichia coli Proteins/metabolism , Nutrients/metabolism , Amino Acids/metabolism , Bacterial Adhesion/physiology , Enteropathogenic Escherichia coli/growth & development , Enteropathogenic Escherichia coli/metabolism , Fluoresceins/metabolism , HeLa Cells , Humans , Membrane Proteins/metabolism , Microscopy, Electron, Scanning , Microscopy, Fluorescence
14.
Cell Rep ; 27(2): 334-342.e10, 2019 04 09.
Article in English | MEDLINE | ID: mdl-30929979

ABSTRACT

We have previously described the existence of membranous nanotubes, bridging adjacent bacteria, facilitating intercellular trafficking of nutrients, cytoplasmic proteins, and even plasmids, yet components enabling their biogenesis remain elusive. Here we reveal the identity of a molecular apparatus providing a platform for nanotube biogenesis. Using Bacillus subtilis (Bs), we demonstrate that conserved components of the flagellar export apparatus (FliO, FliP, FliQ, FliR, FlhB, and FlhA), designated CORE, dually serve for flagellum and nanotube assembly. Mutants lacking CORE genes, but not other flagellar components, are deficient in both nanotube production and the associated intercellular molecular trafficking. In accord, CORE components are located at sites of nanotube emergence. Deleting COREs of distinct species established that CORE-mediated nanotube formation is widespread. Furthermore, exogenous COREs from diverse species could restore nanotube generation and functionality in Bs lacking endogenous CORE. Our results demonstrate that the CORE-derived nanotube is a ubiquitous organelle that facilitates intercellular molecular trade across the bacterial kingdom.


Subject(s)
Bacterial Proteins/metabolism , Nanotubes/chemistry
15.
Microbiology (Reading) ; 163(6): 900-910, 2017 06.
Article in English | MEDLINE | ID: mdl-28597815

ABSTRACT

DksA acts as a co-factor for the intracellular small signalling molecule ppGpp during the stringent response. We recently reported that the expression of the haemagglutinin protease (HAP), which is needed for shedding of the cholera pathogen Vibrio cholerae during the late phase of infection, is significantly downregulated in V. cholerae ∆dksA mutant (∆dksAVc) cells. So far, it has been shown that HAP production by V. cholerae cells is critically regulated by HapR and also by RpoS. Here, we provide evidence that V. cholerae DksA (DksAVc) positively regulates HapR at both the transcriptional and post-transcriptional levels. We show that in ∆dksAVc cells the CsrB/C/D sRNAs, required for the maintenance of intracellular levels of hapR transcripts during the stationary growth, are distinctly downregulated. Moreover, the expression of exponential phase regulatory protein Fis, a known negative regulator of HapR, was found to continue even during the stationary phase in ∆dksAVc cells compared to that of wild-type strain, suggesting another layer of complex regulation of HapR by DksAVc. Extensive reporter construct-based and quantitative reverse-transcriptase PCR (qRT-PCR) analyses supported that RpoS is distinctly downregulated at the post-transcriptional/translational levels in stationary phase-grown ∆dksAVc cells. Since HAP expression through HapR and RpoS is stationary phase-specific in V. cholerae, it appears that DksAVc is also a critical stationary phase regulator for fine tuning of the expression of HAP. Moreover, experimental evidence provided in this study clearly supports that DksAVc is sitting at the top of the hierarchy of regulation of expression of HAP in V. cholerae.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Enzymologic , Metalloendopeptidases/genetics , Repressor Proteins/metabolism , Sigma Factor/metabolism , Vibrio cholerae/enzymology , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Metalloendopeptidases/metabolism , Repressor Proteins/genetics , Sigma Factor/genetics , Vibrio cholerae/genetics , Vibrio cholerae/metabolism
16.
Science ; 355(6326): 735-739, 2017 02 17.
Article in English | MEDLINE | ID: mdl-28209897

ABSTRACT

The mechanisms by which pathogens sense the host and respond by remodeling gene expression are poorly understood. Enteropathogenic Escherichia coli (EPEC), the cause of severe intestinal infection, employs a type III secretion system (T3SS) to inject effector proteins into intestinal epithelial cells. These effectors subvert host cell processes to promote bacterial colonization. We show that the T3SS also functions to sense the host cell and to trigger in response posttranscriptional remodeling of gene expression in the bacteria. We further show that upon effector injection, the effector-bound chaperone (CesT), which remains in the EPEC cytoplasm, antagonizes the posttranscriptional regulator CsrA. The CesT-CsrA interaction provokes reprogramming of expression of virulence and metabolic genes. This regulation is likely required for the pathogen's adaptation to life on the epithelium surface.


Subject(s)
Enteropathogenic Escherichia coli/genetics , Enteropathogenic Escherichia coli/pathogenicity , Escherichia coli Infections/microbiology , Gene Expression Regulation, Bacterial , Host-Pathogen Interactions , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Type III Secretion Systems/metabolism , 5' Untranslated Regions , Adaptation, Physiological , Cytoplasm/metabolism , Enteropathogenic Escherichia coli/metabolism , Escherichia coli Proteins/isolation & purification , Escherichia coli Proteins/metabolism , HeLa Cells , Humans , Molecular Chaperones/isolation & purification , RNA-Binding Proteins/metabolism , Repressor Proteins/metabolism , Transcription, Genetic , Virulence , Virulence Factors/metabolism
17.
Microbiology (Reading) ; 160(Pt 9): 1855-1866, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24987103

ABSTRACT

In Vibrio cholerae, the causative agent of cholera, products of three genes, relA, spoT and relV, govern nutritional stress related stringent response (SR). SR in bacteria is critically regulated by two intracellular small molecules, guanosine 3'-diphosphate 5'-triphosphate (pppGpp) and guanosine 3',5'-bis(diphosphate) (ppGpp), collectively called (p)ppGpp or alarmone. Evolution of relV is unique in V. cholerae because other Gram-negative bacteria carry only relA and spoT genes. Recent reports suggest that RelV is needed for pathogenesis. RelV carries a single (p)ppGpp synthetase or RelA-SpoT domain (SYNTH/RSD) and belongs to the small alarmone synthetase (SAS) family of proteins. Here, we report extensive functional characterizations of the relV gene by constructing several deletion and site-directed mutants followed by their controlled expression in (p)ppGpp(0) cells of Escherichia coli or V. cholerae. Substitution analysis indicated that the amino acid residues K107, D129, R132, L150 and E188 of the RSD region of RelV are essential for its activity. While K107, D129 and E188 are highly conserved in RelA and SAS proteins, L150 appears to be conserved in the latter group of enzymes, and the R132 residue was found to be unique in RelV. Extensive progressive deletion analysis indicated that the amino acid residues at positions 59 and 248 of the RelV protein are the functional N- and C-terminal boundaries, respectively. Since the minimal functional length of RelV was found to be 189 aa, which includes the 94 aa long RSD region, it seems that the flanking residues of the RSD are also important for maintaining the (p)ppGpp synthetase activity.


Subject(s)
Guanosine Pentaphosphate/metabolism , Guanosine Tetraphosphate/metabolism , Ligases/genetics , Ligases/metabolism , Vibrio cholerae/enzymology , Vibrio cholerae/genetics , Amino Acid Substitution , DNA Mutational Analysis , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Mutant Proteins/genetics , Mutant Proteins/metabolism , Sequence Deletion
18.
J Bacteriol ; 194(20): 5638-48, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22904284

ABSTRACT

In bacteria, nutrient deprivation evokes the stringent response, which is mediated by the small intracellular signaling molecule ppGpp. In Gram negatives, the RelA enzyme synthesizes and SpoT hydrolyzes ppGpp, although the latter protein also has weak synthetase activity. DksA, a recently identified RNA polymerase binding transcription factor, acts as a coregulator along with ppGpp for controlling the stringent response. Recently, we have shown that three genes, relA, spoT, and relV, govern cellular levels of ppGpp during various starvation stresses in the Gram-negative cholera pathogen Vibrio cholerae. Here we report functional characterization of the dksA gene of V. cholerae (dksA(Vc)), coding for the protein DksA(Vc). Extensive genetic analyses of the ΔdksA(Vc) mutants suggest that DksA(Vc) is an important component involved in the stringent response in V. cholerae. Further analysis of mutants revealed that DksA(Vc) positively regulates various virulence-related processes, namely, motility, expression of the major secretory protease, called hemagglutinin protease (HAP), and production of cholera toxin (CT), under in vitro conditions. We found that DksA(Vc) upregulates expression of the sigma factor FliA (σ(28)), a critical regulator of motility in V. cholerae. Altogether, it appears that apart from stringent-response regulation, DksA(Vc) also has important roles in fine regulation of virulence-related phenotypes of V. cholerae.


Subject(s)
Gene Expression Regulation, Bacterial , Genes, Regulator , Transcription Factors/metabolism , Vibrio cholerae/genetics , Vibrio cholerae/pathogenicity , Bacterial Proteins/biosynthesis , Cholera Toxin/biosynthesis , Gene Deletion , Guanosine Tetraphosphate/metabolism , Locomotion , Phenotype , Sigma Factor/biosynthesis , Transcription Factors/genetics , Vibrio cholerae/metabolism , Vibrio cholerae/physiology , Virulence
19.
Indian J Med Res ; 133: 212-7, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21415497

ABSTRACT

Nutritional stress elicits stringent response in bacteria involving modulation of expression of several genes. This is mainly triggered by the intracellular accumulation of two small molecules, namely, guanosine 3'-diphosphate 5'-triphosphate and guanosine 3',5'-bis(diphosphate), collectively called (p)ppGpp. Like in other Gram-negative bacteria, the cellular level of (p)ppGpp is maintained in Vibrio cholerae, the causative bacterial pathogen of the disease cholera, by the products of two genes relA and spoT. However, apart from relA and spoT, a novel gene relV has recently been identified in V. cholerae, the product of which has been shown to be involved in (p)ppGpp synthesis under glucose or fatty acid starvation in a ∆relA ∆spoT mutant background. Furthermore, the GTP binding essential protein CgtA and a non-DNA binding transcription factor DksA also seem to play several important roles in modulating stringent response and regulation of other genes in this pathogen. The present review briefly discusses about the role of all these genes mainly in the management of stringent response in V. cholerae.


Subject(s)
Gene Expression Regulation, Bacterial , Vibrio cholerae/genetics , Amino Acid Sequence , Cholera/microbiology , Genes, Bacterial , Molecular Sequence Data , Sequence Alignment , Vibrio cholerae/metabolism
20.
Mol Microbiol ; 72(2): 380-98, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19298370

ABSTRACT

RelA and SpoT of Gram-negative organisms critically regulate cellular levels of (p)ppGpp. Here, we have dissected the spoT gene function of the cholera pathogen Vibrio cholerae by extensive genetic analysis. Unlike Escherichia coli, V. choleraeDeltarelADeltaspoT cells accumulated (p)ppGpp upon fatty acid or glucose starvation. The result strongly suggests RelA-SpoT-independent (p)ppGpp synthesis in V. cholerae. By repeated subculturing of a V. choleraeDeltarelADeltaspoT mutant, a suppressor strain with (p)ppGpp(0) phenotype was isolated. Bioinformatics analysis of V. cholerae whole genome sequence allowed identification of a hypothetical gene (VC1224), which codes for a small protein (approximately 29 kDa) with a (p)ppGpp synthetase domain and the gene is highly conserved in vibrios; hence it has been named relV. Using E. coliDeltarelA or DeltarelADeltaspoT mutant we showed that relV indeed codes for a novel (p)ppGpp synthetase. Further analysis indicated that relV gene of the suppressor strain carries a point mutation at nucleotide position 676 of its coding region (DeltarelADeltaspoT relV676), which seems to be responsible for the (p)ppGpp(0) phenotype. Analysis of a V. choleraeDeltarelADeltaspoTDeltarelV triple mutant confirmed that apart from canonical relA and spoT genes, relV is a novel gene in V. cholerae responsible for (p)ppGpp synthesis.


Subject(s)
Bacterial Proteins/metabolism , Guanosine Pentaphosphate/metabolism , Ligases/metabolism , Vibrio cholerae/genetics , Amino Acid Sequence , Bacterial Proteins/genetics , DNA, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Genes, Bacterial , Ligases/genetics , Molecular Sequence Data , Phenotype , Point Mutation , Pyrophosphatases/genetics , Pyrophosphatases/metabolism , Sequence Analysis, DNA , Vibrio cholerae/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...