Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Antonie Van Leeuwenhoek ; 117(1): 57, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491220

ABSTRACT

Carbapenem resistant Klebsiella pneumoniae causing severe infection resulting in morbidity and mortality have become a global health concern. K. pneumoniae with sequence type ST147 is an international high-risk clonal lineage, genomic studies have been done on K. pneumoniae ST147 isolated from clinical origin but genomic data for environmental K. pneumoniae ST147 is very scarce. Herein, K. pneumoniae IITR008, an extensively drug resistant and potentially hypervirulent bacterium, was isolated from Triveni Sangam, the confluence of three rivers where religious congregations are organized. Phenotypic, genomic and comparative genomic analysis of strain IITR008 was performed. Antibiotic susceptibility profiling revealed resistance to 9 different classes of antibiotics including ß-lactams, ß-lactam combination agents, carbapenem, aminoglycoside, macrolide, quinolones, cephams, phenicol, and folate pathway antagonists and was found to be susceptible to only tetracycline. The strain IITR008 possesses hypervirulence genes namely, iutA and iroN in addition to numerous virulence factors coding for adherence, regulation, iron uptake, secretion system and toxin. Both the IITR008 chromosome and plasmid pIITR008_75 possess a plethora of clinically relevant antibiotic-resistant genes (ARGs) including blaCTX-M-15, blaTEM-1, and blaSHV-11, corroborating the phenotypic resistance. Comparative genomic analysis with other ST147 K. pneumoniae provided insights on the phylogenetic clustering of IITR008 with a clinical strain isolated from a patient in Czech with recent travel history in India and other clinical strains isolated from India and Pakistan. According to the 'One Health' perspective, surveillance of antibiotic resistance in the environment is crucial to impede its accelerated development in diverse ecological niches.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Humans , Klebsiella pneumoniae/genetics , Phylogeny , Rivers , Klebsiella Infections/drug therapy , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Carbapenems , Plasmids , Genomics , Iron , Water , beta-Lactamases/genetics , Microbial Sensitivity Tests
2.
Virus Genes ; 60(2): 222-234, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38279974

ABSTRACT

Klebsiella pneumonia is a serious pathogen involved in a range of infections. The increasing frequency of infection associated with K. pneumoniae and accelerated development of antimicrobial resistance has limited the available options of antibiotics for the treatment of infection. Bacteriophages are an attractive substitute to alleviate the problem of antibiotic resistance. In this study, isolation, microbiological and genomic characterization of bacteriophage Kp109 having the ability to infect K. pneumoniae has been shown. Phage Kp109 showed good killing efficiency and tolerance to a broad range of temperatures (4-60 °C) and pH (3-9). Transmission electron microscopy and genomic analysis indicated that phage Kp109 belongs to the genus Webervirus and family Drexlerviridae. Genomic analysis showed that the Kp109 has a 51,630 bp long double-stranded DNA genome with a GC content of 51.64%. The absence of known lysogenic, virulence, and antibiotic-resistant genes (ARGs) in its genome makes phage Kp109 safer to be used as a biocontrol agent for different purposes including phage therapy. The computational analysis of the putative endolysin gene revealed a binding energy of - 6.23 kcal/mol between LysKp109 and ligand NAM-NAG showing its potential to be used as an enzybiotic. However, future research is required for experimental validation of the in silico work to further corroborate the results obtained in the present study. Overall, phenotypic, genomic, and computational characterization performed in the present study showed that phages Kp109 and LysKp109 are promising candidates for future in vivo studies and could potentially be used for controlling K. pneumoniae infection.


Subject(s)
Bacteriophages , Klebsiella pneumoniae , Klebsiella , Genomics , Anti-Bacterial Agents/pharmacology
3.
Front Microbiol ; 13: 794503, 2022.
Article in English | MEDLINE | ID: mdl-35607594

ABSTRACT

The present study has been aimed at evaluating the antiobesity, antihyperglycemic, and antidepressive potentials of Asparagus racemosus starter-based rice fermented foods. High-throughput NGS technology has revealed a number of bacterial genera in the prepared fermented rice, such as Lactobacillus (29.44%), Brevundimonas (16.21%), Stenotrophomonas (6.18%), Pseudomonas (3.11%), Bacillus (2.88%), and others (<2%). Eight-week administration of rice fermented food has increased food intake, whole-body weight, organ weight, different fat masses, serum lipid profiles, and histology of liver and adipose tissues in HFD-induced obese mice. In addition, upregulation of fatty acid oxidation and downregulation of adipocytogenesis- and lypogenesis-related genes along with the expression of their regulatory nuclear factors such as PPARα, PPARγ, PPARδ, and SREBP-1c have also been noted. Moreover, fermented food decreases fasting blood glucose level and improves glucose and insulin tolerance as well as the expression of GLUT4 receptor. Antiobesity and antihyperglycemic effects are also supported by the changes in insulin, leptin, and adiponectin hormone levels. The real-time polymerase chain reaction (RT-PCR) and denaturing gradient gel electrophoresis (DGGE) analyses have clearly demonstrated the intense colonization of Bacteroides, Lactobacillus, and Bifidobacterium, as well as the suppressed growth rate of γ- and δ-Proteobacteria and Firmicutes in the gut after fermented food intake. In the intestine, the latter group of microorganisms possibly modulate short-chain fatty acid (SCFA) levels such as acetate, butyrate, and propionate more than twofold. The impairment of memory-learning and anxiety-like obesity-associated cognitive phenotypes is mitigated significantly (p < 0.01) by fermented food as well. Thus, the formulated fermented food could be used as a natural therapeutic to alleviate obesity and its associated psychological and pathophysiological ailments.

4.
BMC Genomics ; 22(1): 655, 2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34511070

ABSTRACT

BACKGROUND: Myxobacteria harbor numerous biosynthetic gene clusters that can produce a diverse range of secondary metabolites. Minicystis rosea DSM 24000T is a soil-dwelling myxobacterium belonging to the suborderSorangiineae and family Polyangiaceae and is known to produce various secondary metabolites as well as polyunsaturated fatty acids (PUFAs). Here, we use whole-genome sequencing to explore the diversity of biosynthetic gene clusters in M. rosea. RESULTS: Using PacBio sequencing technology, we assembled the 16.04 Mbp complete genome of M. rosea DSM 24000T, the largest bacterial genome sequenced to date. About 44% of its coding potential represents paralogous genes predominantly associated with signal transduction, transcriptional regulation, and protein folding. These genes are involved in various essential functions such as cellular organization, diverse niche adaptation, and bacterial cooperation, and enable social behavior like gliding motility, sporulation, and predation, typical of myxobacteria. A profusion of eukaryotic-like kinases (353) and an elevated ratio of phosphatases (8.2/1) in M. rosea as compared to other myxobacteria suggest gene duplication as one of the primary modes of genome expansion. About 7.7% of the genes are involved in the biosynthesis of a diverse array of secondary metabolites such as polyketides, terpenes, and bacteriocins. Phylogeny of the genes involved in PUFA biosynthesis (pfa) together with the conserved synteny of the complete pfa gene cluster suggests acquisition via horizontal gene transfer from Actinobacteria. CONCLUSION: Overall, this study describes the complete genome sequence of M. rosea, comparative genomic analysis to explore the putative reasons for its large genome size, and explores the secondary metabolite potential, including the biosynthesis of polyunsaturated fatty acids.


Subject(s)
Myxococcales , Fatty Acids, Unsaturated , Genome, Bacterial , Multigene Family , Myxococcales/genetics , Phylogeny
5.
Front Microbiol ; 10: 730, 2019.
Article in English | MEDLINE | ID: mdl-31068908

ABSTRACT

Traditional leavened wheat-based flat bread khambir is a staple food for the high-altitude people of the Western Himalayan region. The health promoting abilities of two types of khambir, yeast added khambir (YAK) and buttermilk added khambir (BAK), were evaluated. A group of microbes like yeast, mold, lactic acid bacteria (LAB), and Bifidobacterium sp. were abundant in both khambir but in varied proportions. Both are enriched with phenolics and flavonoids. The aqueous extracts of both breads strongly inhibited the growth of enteropathogens. Molecular docking experiments showed that phenolic acid, particularly p-coumaric acid, blocked the active sites of ß-glucosidase and acetylcholine esterase (AChE), thereby inhibiting their activities. YAK and BAK showed antiradical and antioxidant activity ranging from 46 to 67% evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and ferric reducing/antioxidant power (FRAP) assays. The aqueous extract of both khambir samples protected the arsenic toxicity when examined under an in situ rat intestinal loop model study. The arsenic induced elevated levels of superoxide dismutase (SOD), catalase (CAT), reduced glutathione, lipid peroxidation (LPO) and DNA fragmentation, and transmembrane mitochondrial potential was alleviated by khambir extract. These results scientifically supported its age-old health benefit claims by the consumer at high altitude and there are enough potentialities to explore khambir as a medicinal food for human welfare.

6.
Genomics ; 111(3): 426-435, 2019 05.
Article in English | MEDLINE | ID: mdl-29501678

ABSTRACT

Mycobacterium is gram positive, slow growing, disease causing Actinobacteria. Beside potential pathogenic species, Mycobacterium also contains opportunistic pathogens as well as free living non-pathogenic species. Disease related various analyses on Mycobacterium tuberculosis are very widespread. However, genomic study of overall Mycobacterium species for understanding the selection pressure on genes as well as evolution of the organism is still illusive. MLSA and 16s rDNA based analysis has been generated for 241 Mycobacterium strains and a detailed analysis of codon and amino acid usage bias of mycobacterial genes, their functional analysis have been done. Further the evolutionary features of M. avium complex also have been revealed. Mycobacterial genes are moderately GC rich showed higher expression level in PPs and significant negative correlation with biosynthetic cost of proteins. Translational selection pressure was observed in mycobacterial genes. MAC showed close relationship with NPs and higher evolutionary rate in MAC revealed their constant evolving nature.


Subject(s)
Genome, Bacterial , Mycobacterium/genetics , Phylogeny , DNA, Ribosomal , Evolution, Molecular , Genomics , Mycobacterium avium/genetics
7.
Genetica ; 146(1): 13-27, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28921302

ABSTRACT

The present study has been aimed to the comparative analysis of high GC composition containing Corynebacterium genomes and their evolutionary study by exploring codon and amino acid usage patterns. Phylogenetic study by MLSA approach, indel analysis and BLAST matrix differentiated Corynebacterium species in pathogenic and non-pathogenic clusters. Correspondence analysis on synonymous codon usage reveals that, gene length, optimal codon frequencies and tRNA abundance affect the gene expression of Corynebacterium. Most of the optimal codons as well as translationally optimal codons are C ending i.e. RNY (R-purine, N-any nucleotide base, and Y-pyrimidine) and reveal translational selection pressure on codon bias of Corynebacterium. Amino acid usage is affected by hydrophobicity, aromaticity, protein energy cost, etc. Highly expressed genes followed the cost minimization hypothesis and are less diverged at their synonymous positions of codons. Functional analysis of core genes shows significant difference in pathogenic and non-pathogenic Corynebacterium. The study reveals close relationship between non-pathogenic and opportunistic pathogenic Corynebaterium as well as between molecular evolution and survival niches of the organism.


Subject(s)
Amino Acids/genetics , Codon , Corynebacterium/genetics , Evolution, Molecular , Genome, Bacterial , Corynebacterium/classification , Genes, Bacterial , Genetic Variation , Genomics , Phylogeny , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...