Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioconjug Chem ; 30(5): 1575-1583, 2019 05 15.
Article in English | MEDLINE | ID: mdl-31009567

ABSTRACT

The innocent silicon quantum dots (SQDs) having dual emissive property (blue in VIS and red in NIR), high photostability, and freedom from auto fluorescence are designed and synthesized for the first time using ethylene glycol. A new attempt has been made for direct labeling of Alpha 2-HS-Glycoprotein (Fetuin A) through functionalization of the synthesized dots by EDC coupling. The SQDs were characterized by FTIR, TEM, AFM, XRD, EDX, DLS, and TGA. The chemistry involved in the synthesis and functionalization of dots is elucidated in detail. The synthesized SQDs are suitable for live cell imaging as well as direct labeling of the Fetuin A in the NIR region. The direct labeling technique developed for Fetuin A imaging is robust, more specific, and simple, and reduces the number of incubation and washing steps and produces better quality data compared to the conventional method using Rhodamine B.


Subject(s)
Quantum Dots/chemistry , Silicon/chemistry , alpha-2-HS-Glycoprotein/chemistry , Ethylene Glycol/chemistry , Humans , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
2.
Bioorg Med Chem ; 13(1): 165-74, 2005 Jan 03.
Article in English | MEDLINE | ID: mdl-15582461

ABSTRACT

The interaction of berberine with single stranded poly(rA) structure was investigated using a combination of spectrophotometric, spectrofluorimetric, circular dichroic, viscometric, and thermodynamic studies. The interaction process was characterized by typical hypochromic and bathochromic effects in the absorption spectrum of berberine, enhancement of fluorescence intensity of berberine, increase of viscosity, and perturbation of circular dichroic spectrum of single stranded poly(rA). Scatchard plot obtained from spectrophotometric analysis showed that berberine bound strongly to single stranded poly(rA) in a non-cooperative manner. In contrast, berberine does not show any significant effect (i) in its absorbance and fluorescence spectra on binding to double stranded poly(rA), (ii) alter the circular dichroic spectrum of double stranded poly(rA), or (iii) increase of viscosity of double stranded poly(rA) indicating that it does not bind at all to double stranded poly(rA) structure. Thermodynamic parameters indicated that the binding of the alkaloid to single stranded poly(rA) is an endothermic process and entropy driven. All these findings, taken together clearly support that berberine binds strongly to single stranded poly(rA) structure by a mechanism of partial intercalation leading to its use in gene regulation in eukaryotic cells.


Subject(s)
Berberine/chemical synthesis , Poly A/metabolism , Berberine/metabolism , Circular Dichroism , Nucleic Acid Denaturation , Osmolar Concentration , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Thermodynamics , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...