Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemphyschem ; : e202400176, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38752882

ABSTRACT

We report a deep learning-based approach to accurately predict the emission spectra of phosphorescent heteroleptic [Ir(C^N)2(NN)]+ complexes, enabling the rapid discovery of novel Ir(III) chromophores for diverse applications including organic light-emitting diodes and solar fuel cells. The deep learning models utilize graph neural networks and other chemical features in architectures that reflect the inherent structure of the heteroleptic complexes, composed of C^N and N^N ligands, and are thus geared towards efficient training over the dataset. By leveraging experimental emission data, our models reliably predict the full emission spectra of these complexes across various emission profiles, surpassing the accuracy of conventional DFT and correlated wavefunction methods, while simultaneously achieving robustness to the presence of imperfect (noisy, low-quality) training spectra. We showcase the potential applications for these and related models for \insilico\ prediction of complexes with tailored emission properties, as well as in "design of experiment'' contexts to reduce the synthetic burden of high-throughput screening. In the latter case, we demonstrate that the models allow to exploit a limited amount of experimental data to explore a wide range of chemical space, thus leveraging a modest synthetic effort.

2.
J Phys Chem A ; 122(51): 9738-9754, 2018 Dec 27.
Article in English | MEDLINE | ID: mdl-30484647

ABSTRACT

Diol radicals (DRs) are important intermediates in biocatalysis, atmospheric chemistry, and biomass combustion. They are particularly generated from photolysis of halogenated diols and addition of hydroxyl radical to a double bond of unsaturated alcohols, such as lignols. The energized DRs further isomerize/decompose to form products, including water. Aqueous-phase dehydration in radiolytic and biomimetic systems typically occurs at low temperatures, with or without catalysis, whereas the gas-phase dehydration is usually considered energetically unfavorable. In the present study, we propose a new low-energy, roaming-like mechanism based on a detailed dispersion-corrected DFT and ab initio level analysis of the gas-phase dehydration of DRs obtained from the combination of OH radicals with allyl alcohol (AA, CH2═CHCH2OH)-the simplest relevant model of the unsaturated alcohols. The roaming pathways involve a nearly dissociated OH-group, which subsequently abstracts an H atom of the remaining fragment to form water and [C3H5O] radical via a transition state (TS) with energy close to the C-O bond fission asymptote. Two types of roaming-like first-order saddle points (SP) are identified for unimolecular dehydration of 1,2- and 1,3-DR radical adducts involving either both hydroxyl groups of diol radicals to generate an oxygen-centered radical, or ß-OH group and a skeletal α-hydrogen atom of the 1,2-DR to form a resonantly stabilized hydroxyallyl radical. Two higher energy conventional (tight) transition states, along with the pathways to 1,2-OH-migration, as well as direct H-abstraction, are also identified and analyzed. Most of the traditional density functional theory methods that have been successfully employed in the literature to locate so-far-known roaming SPs were also able to identify the new mechanism, in accord with dispersion-corrected double hybrid B2PLYP-D3(BJ) and mPW2PLYPD methods involving MP2-correlation corrections. However, the MP2 method itself failed to locate any of them, which seems to be typical for MP2 method for loose TS structures, confirmed here for a flat region of PES connecting direct and roaming saddle points. However, MP2 method correctly locates an identical roaming SP for a larger p-coumaryl alcohol model involving hydroxyphenyl substituent at Cγ atom of AA. Two types of interfragmental interactions are identified that stabilize the roaming SPs: (a) H-bonding of the leaving OH radical either with the H atom of the remaining OH group, or with π-cloud of the double bond; (b) direct interaction of π-electrons with the lone-pair electrons of the heteroatom in the leaving OH group through the TS-ring. The alternative TSs are qualitatively characterized by "collinearity" angle of the OH radical attack on the O-H/C-H bonds of the substrate in abstraction-like O-H-O geometry, attributed to the improved orbital overlaps. The proposed mechanism presents broader implications to signify, particularly, a larger role in atmospheric and combustion processes, especially biomass pyrolysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...