Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Oncoimmunology ; 11(1): 2111909, 2022.
Article in English | MEDLINE | ID: mdl-36105746

ABSTRACT

CD47 has established roles in the immune system for regulating macrophage phagocytosis and lymphocyte activation, with growing evidence of its cell-intrinsic regulatory roles in natural killer and CD8+ T cells. CD47 limits antigen-dependent cytotoxic activities of human and murine CD8+ T cells, but its role in T cell activation kinetics remains unclear. Using in vitro and in vivo models, we show here that CD47 differentially regulates CD8+ T cell responses to short- versus long-term activation. Although CD47 was not required for T cell development in mice and early activation in vitro, short-term stimuli elevated pathogen-reactive gene expression and enhanced proliferation and the effector phenotypes of Cd47-deficient relative to Cd47-sufficient CD8+ T cells. In contrast, persistent TCR stimulation limited the effector phenotypes of Cd47 -/- CD8+ T cells and enhanced their apoptosis signature. CD8+ T cell expansion and activation in vivo induced by acute lymphocytic choriomeningitis virus (LCMV) infection did not differ in the absence of CD47. However, the frequency and effector phenotypes of Cd47-/- CD8+ T cells were constrained in chronic LCMV-infected as well as in mice bearing B16 melanoma tumors. Therefore, CD47 regulates CD8+ T cell activation, proliferation, and fitness in a context-dependent manner.


Subject(s)
Lymphocyte Activation , Lymphocytic Choriomeningitis , Animals , CD47 Antigen/genetics , CD8-Positive T-Lymphocytes , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout
2.
Int J Mol Sci ; 22(9)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925464

ABSTRACT

The identification of thrombospondin-1 as an angiogenesis inhibitor in 1990 prompted interest in its role in cancer biology and potential as a therapeutic target. Decreased thrombospondin-1 mRNA and protein expression are associated with progression in several cancers, while expression by nonmalignant cells in the tumor microenvironment and circulating levels in cancer patients can be elevated. THBS1 is not a tumor suppressor gene, but the regulation of its expression in malignant cells by oncogenes and tumor suppressor genes mediates some of their effects on carcinogenesis, tumor progression, and metastasis. In addition to regulating angiogenesis and perfusion of the tumor vasculature, thrombospondin-1 limits antitumor immunity by CD47-dependent regulation of innate and adaptive immune cells. Conversely, thrombospondin-1 is a component of particles released by immune cells that mediate tumor cell killing. Thrombospondin-1 differentially regulates the sensitivity of malignant and nonmalignant cells to genotoxic stress caused by radiotherapy and chemotherapy. The diverse activities of thrombospondin-1 to regulate autophagy, senescence, stem cell maintenance, extracellular vesicle function, and metabolic responses to ischemic and genotoxic stress are mediated by several cell surface receptors and by regulating the functions of several secreted proteins. This review highlights progress in understanding thrombospondin-1 functions in cancer and the challenges that remain in harnessing its therapeutic potential.


Subject(s)
Neoplasms , Thrombospondin 1/physiology , Tumor Microenvironment/physiology , Animals , Cell Adhesion , Cell Movement , Humans , Integrins/metabolism , Mice , Neoplasms/blood supply , Neoplasms/immunology , Neoplasms/pathology , Neovascularization, Pathologic/metabolism , Neovascularization, Physiologic/genetics , T-Lymphocytes/immunology , Thrombospondin 1/genetics , Thrombospondin 1/metabolism
3.
Cancer Immunol Res ; 7(9): 1547-1561, 2019 09.
Article in English | MEDLINE | ID: mdl-31362997

ABSTRACT

Elevated CD47 expression in some cancers is associated with decreased survival and limited clearance by phagocytes expressing the CD47 counterreceptor SIRPα. In contrast, elevated CD47 mRNA expression in human melanomas was associated with improved survival. Gene-expression data were analyzed to determine a potential mechanism for this apparent protective function and suggested that high CD47 expression increases recruitment of natural killer (NK) cells into the tumor microenvironment. The CD47 ligand thrombospondin-1 inhibited NK cell proliferation and CD69 expression in vitro Cd47 -/- NK cells correspondingly displayed augmented effector phenotypes, indicating an inhibitory function of CD47 on NK cells. Treating human NK cells with a CD47 antibody that blocks thrombospondin-1 binding abrogated its inhibitory effect on NK cell proliferation. Similarly, treating wild-type mice with a CD47 antibody that blocks thrombospondin-1 binding delayed B16 melanoma growth, associating with increased NK cell recruitment and increased granzyme B and interferon-γ levels in intratumoral NK but not CD8+ T cells. However, B16 melanomas grew faster in Cd47 -/- than in wild-type mice. Melanoma-bearing Cd47 -/- mice exhibited decreased splenic NK cell numbers, with impaired effector protein expression and elevated exhaustion markers. Proapoptotic gene expression in Cd47-/- NK cells was associated with stress-mediated increases in mitochondrial proton leak, reactive oxygen species, and apoptosis. Global gene-expression profiling in NK cells from tumor-bearing mice identified CD47-dependent transcriptional responses that regulate systemic NK activation and exhaustion. Therefore, CD47 positively and negatively regulates NK cell function, and therapeutic antibodies that block inhibitory CD47 signaling can enhance NK immune surveillance of melanomas.


Subject(s)
CD47 Antigen/genetics , Gene Expression , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Animals , Apoptosis , CD47 Antigen/metabolism , Disease Models, Animal , Energy Metabolism/drug effects , Humans , Killer Cells, Natural/drug effects , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Melanoma, Experimental , Mice , Mice, Knockout , Mitochondria/genetics , Mitochondria/metabolism , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/mortality , Prognosis , RNA, Messenger , Reactive Oxygen Species/metabolism , Stress, Physiological , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Thrombospondin 1/pharmacology
4.
Lipids ; 53(7): 663-688, 2018 07.
Article in English | MEDLINE | ID: mdl-30252128

ABSTRACT

Triacylglycerol (TAG) is the major storage lipid in most terrestrial plants and microalgae, and has great nutritional and industrial value. Since the demand for vegetable oil is consistently increasing, numerous studies have been focused on improving the TAG content and modifying the fatty-acid compositions of plant seed oils. In addition, there is a strong research interest in establishing plant vegetative tissues and microalgae as platforms for lipid production. In higher plants and microalgae, TAG biosynthesis occurs via acyl-CoA-dependent or acyl-CoA-independent pathways. Diacylglycerol acyltransferase (DGAT) catalyzes the last and committed step in the acyl-CoA-dependent biosynthesis of TAG, which appears to represent a bottleneck in oil accumulation in some oilseed species. Membrane-bound and soluble forms of DGAT have been identified with very different amino-acid sequences and biochemical properties. Alternatively, TAG can be formed through acyl-CoA-independent pathways via the catalytic action of membrane-bound phospholipid:diacylglycerol acyltransferase (PDAT). As the enzymes catalyzing the terminal steps of TAG formation, DGAT and PDAT play crucial roles in determining the flux of carbon into seed TAG and thus have been considered as the key targets for engineering oil production. Here, we summarize the most recent knowledge on DGAT and PDAT in higher plants and microalgae, with the emphasis on their physiological roles, structural features, and regulation. The development of various metabolic engineering strategies to enhance the TAG content and alter the fatty-acid composition of TAG is also discussed.


Subject(s)
Acyl Coenzyme A/metabolism , Acyltransferases/metabolism , Biotechnology , Diacylglycerol O-Acyltransferase/metabolism , Microalgae/enzymology , Plants/enzymology
5.
Front Immunol ; 9: 2985, 2018.
Article in English | MEDLINE | ID: mdl-30643501

ABSTRACT

CD47 is a ubiquitous cell surface receptor that directly regulates T cell immunity by interacting with its inhibitory ligand thrombospondin-1 and limits clearance of cells by phagocytes that express its counter-receptor signal-regulatory protein-α. Murine natural killer (NK) cells express higher levels of CD47 than other lymphocytes, but the role of CD47 in regulating NK cell homeostasis and immune function remains unclear. Cd47-/- mice exhibited depletion of NK precursors in bone marrow, consistent with the antiphagocytic function of CD47. In contrast, antisense CD47 knockdown or gene disruption resulted in a dose dependent accumulation of immature and mature NK cells in spleen. Mature Cd47-/- NK cells exhibited increased expression of NK effector and interferon gene signatures and an increased proliferative response to interleukin-15 in vitro. Cd47-/- mice showed no defect in their early response to acute Armstrong lymphocytic choriomeningitis virus (LCMV) infection but were moderately impaired in controlling chronic Clone-13 LCMV infection, which was associated with depletion of splenic NK cells and loss of effector cytokine and interferon response gene expression in Cd47-/- NK cells. Broad CD47-dependent differences in NK activation, survival, and exhaustion pathways were observed in NK cell transcriptional signatures in LCMV infected mice. These data identify CD47 as a cell-intrinsic and systemic regulator of NK cell homeostasis and NK cell function in responding to a viral infection.


Subject(s)
CD47 Antigen/metabolism , Killer Cells, Natural/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/immunology , Animals , Bone Marrow Transplantation , CD47 Antigen/genetics , CD47 Antigen/immunology , Cell Proliferation , Disease Models, Animal , Female , Humans , Killer Cells, Natural/metabolism , Lymphocytic Choriomeningitis/virology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Spleen/cytology , Spleen/immunology , Transplantation Chimera
6.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(9): 853-868, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28504210

ABSTRACT

The oleaginous microalga Lobosphaera incisa (Trebouxiophyceae, Chlorophyta) contains arachidonic acid (ARA, 20:4 n-6) in all membrane glycerolipids and in the storage lipid triacylglycerol. The optimal growth temperature of the wild-type (WT) strain is 25°C; chilling temperatures (≤15°C) slow its growth. This effect is more pronounced in the delta-5-desaturase ARA-deficient mutant P127, in which ARA is replaced with dihomo-γ-linolenic acid (DGLA, 20:3 n-6). In nutrient-replete cells grown at 25°C, the major chloroplast lipid monogalactosylglycerol (MGDG) was dominated by C18/C16 species in both strains. Yet ARA constituted over 10% of the total fatty acids in the WT MGDG as a component of C20/C18 and C20/C20 species, whereas DGLA was only a minor component of MGDG in P127. Both strains increased the percentage of 18:3 n-3 in membrane lipids under chilling temperatures. The temperature downshift led to a dramatic increase in triacylglycerol at the expense of chloroplast lipids. WT and P127 showed a similarly high photochemical quantum yield of photosystem II, whereas non-photochemical quenching (NPQ) and violaxanthin de-epoxidation were drastically higher in P127, especially at 15°C. Fluorescence anisotropy measurements indicated that ARA-containing MGDG might contribute to sustaining chloroplast membrane fluidity upon dropping to the chilling temperature. We hypothesize that conformational changes in chloroplast membranes and increased rigidity of the ARA-deficient MGDG of P127 at chilling temperatures are not compensated by trienoic fatty acids. This might 'lock' violaxanthin de-epoxidase in the activated state causing high constitutive NPQ and alleviate the risk of photodamage under chilling conditions in the mutant.


Subject(s)
Arachidonic Acid/metabolism , Microalgae/metabolism , Microalgae/physiology , Stress, Physiological/physiology , Chloroplasts/metabolism , Chloroplasts/physiology , Cold Temperature , Delta-5 Fatty Acid Desaturase , Fatty Acid Desaturases/metabolism , Light , Lipids/physiology , Membrane Fluidity/physiology , Photosystem II Protein Complex/physiology , Triglycerides/metabolism , Xanthophylls/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...