Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Metab Dispos ; 47(10): 1032-1039, 2019 10.
Article in English | MEDLINE | ID: mdl-31375472

ABSTRACT

Here, we report the application of a novel hepatocyte system, the cofactor-supplemented permeabilized cryopreserved human hepatocytes [MetMax human hepatocytes (MMHHs)] in a higher-throughput 384-well plate assay for the evaluation of cytochrome P450 (P450) inhibition. The assay was created to develop physiologically relevant P450 inhibition information, taking advantage of the complete organelle composition and their associated drug-metabolizing enzymes of the MMHH but with the ease of use of human liver microsomes, including storage at -80°C instead of in liquid nitrogen, and thaw and use without centrifugation and microscopic evaluation as required for intact hepatocytes. Nine key P450 isoforms for drug metabolism (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4) were evaluated using multiple isoform-selective inhibitors. Results with MMHH were found to be comparable to those obtained with intact cryopreserved human hepatocytes (CHHs). Isoform-selective drug-metabolizing enzyme pathways evaluated were phenacetin O-deethylation (CYP1A2), coumarin 7-hydroxylation (CYP2A6), bupropion hydroxylation (CYP2B6), amodiaquine N-deethylation (CYP2C8), diclofenac 4-hydroxylation (CYP2C9), s-mephenytoin 4'-hydroxylation (CYP2C19), dextromethorphan O-demethylation (CYP2D6), chlorzoxazone 6-hydroxylation (CYP2E1), and midazolam 1'-hydroxylation and testosterone 6ß-hydroxylation (CYP3A4). The Km values obtained with MMHHs were comparable with those reported in the literature for CHHs. Using substrate concentrations at or near Km values, the IC50 values for the standard inhibitors against the P450 activities were found to be comparable between MMHHs and CHHs, with 73% and 84% of values falling within 2-fold and 3-fold, respectively, from the line of unity. The results indicate that MMHHs can be an efficient experimental system for the evaluation of P450 inhibition in hepatocytes. SIGNIFICANCE STATEMENT: MetMax human hepatocytes (MMHHs) are cofactor-supplemented cryopreserved human hepatocytes with the complete drug-metabolizing enzyme pathways of the conventional hepatocytes but with the convenience of human liver microsomes, including storage at -80°C instead of in liquid nitrogen, and direct thaw and use without a need for centrifugation and microscopic examination. Here, we report the application of MMHH in a high-throughput assay in a 384-well plate format for the evaluation of cytochrome P450 (P450) inhibition. Our results show that data obtained with MMHH are similar to those with conventional hepatocytes, suggesting that the MMHH 384-well P450 inhibition assay can be used routinely for the evaluation of drug-drug interaction potential of new chemical entities in drug development.


Subject(s)
Cell Culture Techniques/methods , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Enzyme Assays/methods , High-Throughput Screening Assays/methods , Cryopreservation , Culture Media/chemistry , Drug Interactions , Hepatocytes , Humans , Inhibitory Concentration 50 , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Microsomes, Liver
2.
J Recept Signal Transduct Res ; 38(4): 359-366, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30481094

ABSTRACT

Unbound drug concentration in the brain would be the true exposure responsible for specific target occupancy. Drug exposures from preclinical are total concentrations of those over/underestimate the clinical dose projection. With the application of mass spectrometry, the current work proposes a definite measure of test drug exposures at serotonin-2A occupancy. The 5-HT2A occupancy of antagonist in the rat brain has determined with non-radiolabeled tracer MDL-100,907 at an optimized dose (3 µg/kg) and treatment time (30 min). Equilibrium dialysis method determines the in vitro free fraction of the test antagonist in untreated rat brain homogenates and plasma. Drug-free fractions derived the unbound concentration (EC50) in plasma and brain at test doses. The corresponding binding affinities (Ki) correlated with the unbound concentrations. Except for quetiapine, the ED50 values in the dose-occupancy curves of antagonists are close and ranged from 1 to 3 mg/kg. The test drug quetiapine, eplivanserin, and clozapine showed high free fractions in plasma, but for ketanserin and olanzapine, the brain free fraction was higher. The correlation between the unbound EC50 of the antagonists and corresponding Ki values was good (r2=0.828). The improved EC50 accuracy with unbound concentrations was 10-250 folds in plasma and 10-170 folds in the brain. Further, the free fractions (fu, plasma/fu, brain) of test drugs had shown a correlation of ∼83% with brain permeability (Ctotal brain/Ctotal plasma), a limiting factor. Thus, correlating the occupancy with unbound exposure and pharmacology would result in an accurate measurement of drug potency and optimizes in selecting the clinical dose.


Subject(s)
Brain/drug effects , Serotonin Antagonists/administration & dosage , Serotonin/metabolism , Animals , Brain/metabolism , Clozapine/administration & dosage , Clozapine/blood , Clozapine/chemistry , Dose-Response Relationship, Drug , Fluorobenzenes/administration & dosage , Fluorobenzenes/blood , Fluorobenzenes/chemistry , Humans , Male , Piperidines/administration & dosage , Piperidines/blood , Piperidines/chemistry , Quetiapine Fumarate/administration & dosage , Quetiapine Fumarate/blood , Quetiapine Fumarate/chemistry , Rats , Receptor, Serotonin, 5-HT2A , Serotonin/chemistry , Serotonin Antagonists/blood , Serotonin Antagonists/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...